

Upside-Down Reinforcement Learning Can Diverge in Stochastic Environments With Episodic Resets

Miroslav Štrupl¹, Francesco Faccio¹, Dylan R. Ashley¹, Rupesh Kumar Srivastava², Jürgen Schmidhuber^{1,2,3}

¹The Swiss AI Lab IDSIA/USI/SUPSI, Lugano, Switzerland ²NNAISENSE, Lugano, Switzerland ³KAUST, Thuwal, Saudi Arabia

{struplm, francesco, dylan.ashley}@idsia.ch, rupesh@nnaisense.com, juergen@idsia.ch

- Upside-Down Reinforcement Learning (UDRL) is an approach for solving RL problems that does not require value functions and uses *only* supervised learning[2, 3].
- Ghosh et al. [1] proved that Goal-Conditional Supervised Learning (GCSL)---a simplified version of UDRL---optimizes a lower bound on goal-reaching performance.
- Question: Does UDRL converge to the optimal policy in arbitrary environments?
- Here we show that for a specific *episodic* UDRL algorithm (eUDRL, including GCSL), **this is not the case, and give the causes of this limitation.**

eUDRL Non-Optimality in Stochastic Environments

eUDRL Recursion Rewrite

$$\pi_{n+1} := \arg \max_{\pi} \mathbb{E}_{\sigma} \log \left(\pi(a_0^{\sigma} \mid s_0^{\sigma}, \underbrace{l(\sigma)}_{h}, \underbrace{\rho(s_{l(\sigma)}^{\sigma})}_{g}) \right).$$

$$\pi_{n+1}(a|s,h,g) = \mathbb{P}(A_0^{\Sigma} = a|S_0^{\Sigma} = s, l(\Sigma) = h, \rho(S_{l(\Sigma)}^{\Sigma}) = g; \pi_n)$$
(3.1)

$$\propto \underbrace{\mathbb{P}(\rho(S_{l(\Sigma)}^{\Sigma}) = g|A_0^{\Sigma} = a, S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)}_{Q_A^{\pi_n,g}(s,h,a)} \cdot \underbrace{\mathbb{P}(A_0^{\Sigma} = a|S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)}_{\pi_{A,n}(a|s,h)}$$

 Assumptions: finite (discrete) environments, no function approximation, unlimited number of samples.

Background

- $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p_T, \mu_0, r)$ an MDP where:
- \mathcal{S}, \mathcal{A} finite state and action spaces
- $p_T(s'|s, a)$ is a transition probability.
- r(s', s, a) deterministic reward function.
- $\mu_0(s)$ initial state probability.
- return $G_t := \sum_{k=0}^{\infty} r(S_{t+1+k}, S_{t+k}, A_{t+1}),$ • policy $\pi(a|s)$
- state/action-value functions: $V^{\pi}(s) := \mathbb{E}_{\pi}[G_t|S_t = s; \pi],$ $Q^{\pi}(s, a) := \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a; \pi].$

In UDRL the agent takes (besides the state) an extra *command* input (h, g). We will fix the command interpretation: ``**reach goal** g **in** h **number of steps**". **Objective:** Become better at fulfilling commands

action
$$\mathcal{M}$$
-state horizon goal
 $\pi(a \mid \underline{s}, \underline{h}, \underline{g})$
 $\overline{s} - \overline{\mathcal{M}}$ state

Motivation: We extend the state space by the command to be able to view an eUDRL agent as an ordinary agent on a slightly bigger MDP $\overline{\mathcal{M}}$.

Command extension (CE) of an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p_T, r, \mu_0)$ is the MDP $\overline{\mathcal{M}} = (\bar{\mathcal{S}}, \mathcal{A}, p_T, r, \mu_0)$

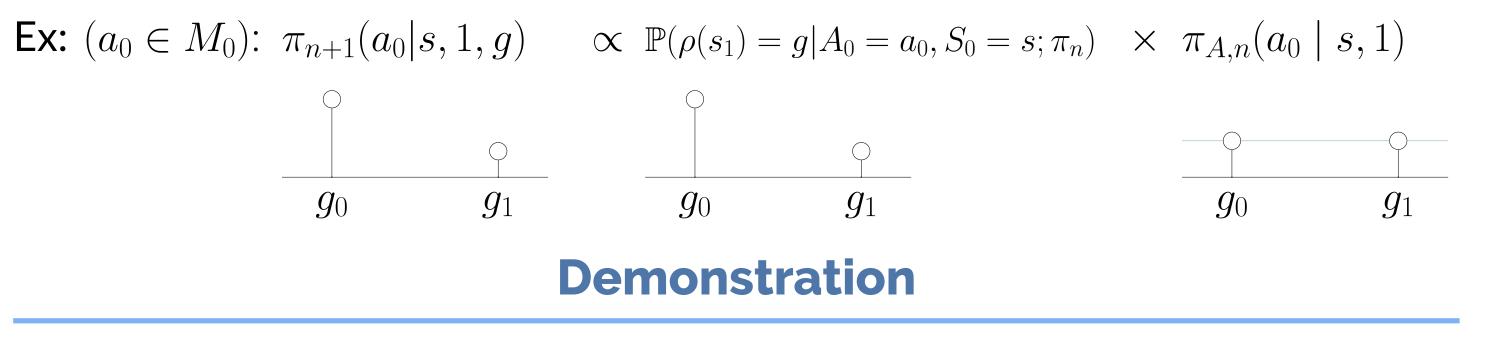
average Q

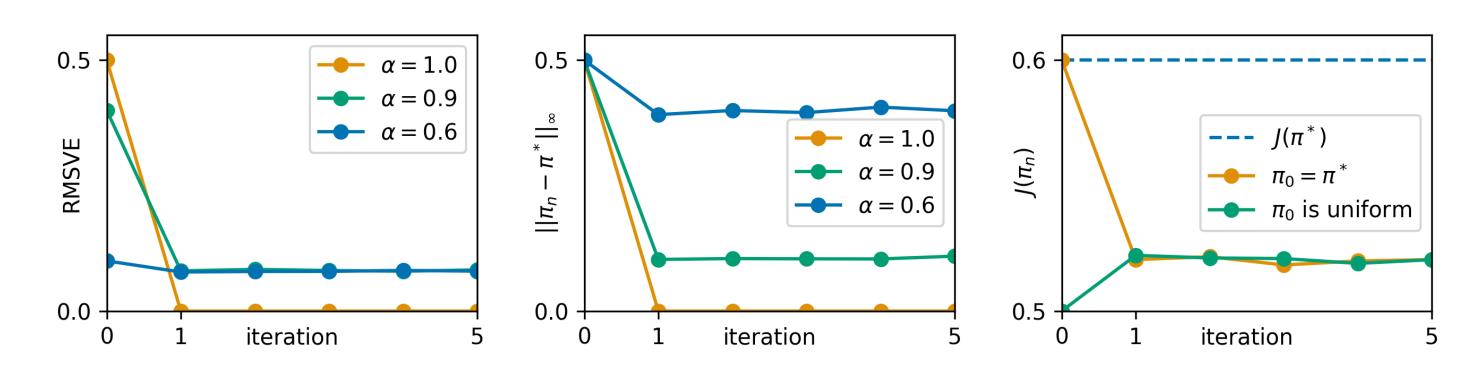
where

$$Q_A^{\pi_n,g}(s,h,a) = \mathbb{P}(\rho(S_h) = g | A_0 = a, S_0 = s; \pi_n)$$

$$\pi_{A,n}(a|s,h) = \sum_{h' \ge h, g' \in \mathcal{G}} \pi_n(a|h',g',s) \mathbb{P}(H_0^{\Sigma} = h', G_0^{\Sigma} = g'|S_0^{\Sigma} = s, l(\Sigma) = h; \pi_n)$$

Problem: "averaging" across goals g', and horizons h' is a problem. E.g. $\pi_{A,n}$ is constant in g, everything has to be accounted in multiply by $Q_A^{\pi_n,g}$ step. (Formally see lemma 4.1 at the bottom*)





 $(\mathcal{S}, \mathcal{A}, \bar{p}_T, \bar{r}, \bar{\mu}_0,
ho)$, where:

(Items in this color has to be supplied in addition to \mathcal{M})

• $\rho: \mathcal{S} \to \mathcal{G}$ -goal map, \mathcal{G} -goal set

• $\overline{S} := S \times \{h \le N\} \times G$, N-max.hor., $\overline{S}_A := \{(s, h, g) \in \overline{S} | h = 0\}$ -absorbing states • $\overline{\mu}_0(s, h, g) := \mathbb{P}(H_0 = h, G_0 = g | S_0 = s) \mu_0(s)$

$$\begin{pmatrix} s_0 \\ h \\ g \end{pmatrix} \xrightarrow{\pi, p_T} \begin{pmatrix} s_1 \\ h-1 \\ g \end{pmatrix} \xrightarrow{\pi, p_T} \dots \begin{pmatrix} s_{h-1} \\ 1 \\ g \end{pmatrix} \xrightarrow{\pi, p_T} \begin{pmatrix} s_h \\ 0 \\ g \end{pmatrix} \in \bar{\mathcal{S}}_A$$

 \bar{p}_T : g-fixed, h-decreases by 1 til 0, s-evolves according to p_T for h > 0; \bar{r} : non-zero just from $h = 1 \implies V^{\pi}(s, h, g) = \mathbb{P}(\rho(S_h) = g | \bar{S}_0 = (s, h, g); \pi).$

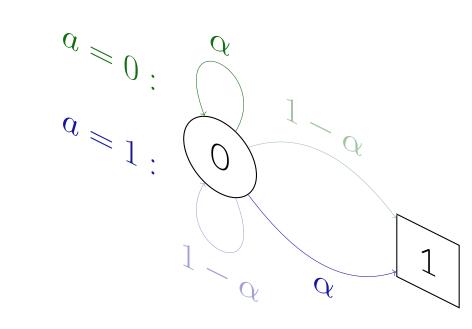
Segment distribution $\Sigma \sim d_{\Sigma}^{\pi}$ - analogy to the state visitation distribution, **segment** - a continuous chunk of the trajectory $\Sigma = (l(\Sigma) , S_0^{\Sigma} , H_0^{\Sigma}, G_0^{\Sigma}, A_0^{\Sigma}, S_1^{\Sigma}, A_1^{\Sigma}, \dots, S_{l(\Sigma)}^{\Sigma})$

the last state

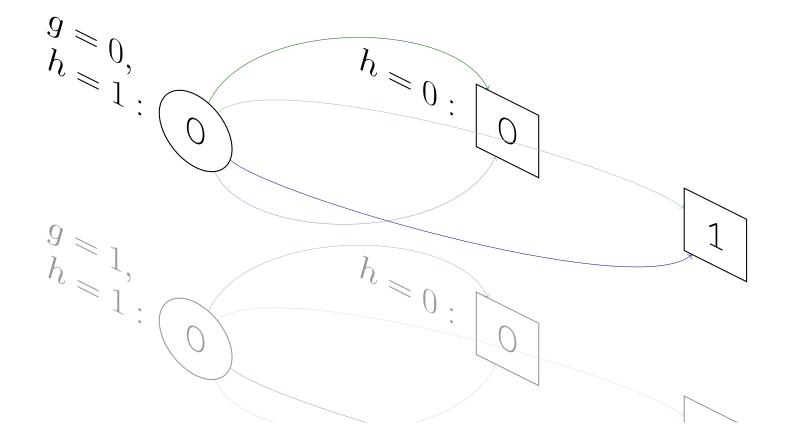
eUDRL learning algorithm

- eUDRL [3] starts from an initial policy π_0 and generates a sequence of policies (π_n) . Each iteration consists of two steps:
- 1. a batch of episodes is generated using the current policy π_n ,
- 2. a new policy π_{n+1} is fitted to some action conditional of $d_{\Sigma}^{\pi_n}$

 $\mathcal{M} : \mathcal{S} := \mathcal{A} := \{0, 1\},\ \mu_0 : S_0 := 0$



 $\alpha \in [0.5, 1]$ -stochasticity, $\alpha = 1$ -deterministic p_T , $\overline{\mathcal{M}} : N := 1, \mathcal{G} := \mathcal{S}, \rho := \mathrm{id}_{\mathcal{S}},$ $\overline{\mu}_0 : H_0 := 1, G_0 | H_0, S_0 \sim \mathcal{U}(\mathcal{G})$



• Everything is constant for iteration > 0. • RMSVE and $\|\pi_n - \pi^*\|_{\infty}$ do not approach O for stochastic case ($\alpha < 1$). Increasing the number of iterations or the sample size does not help! • There is no monotony in GCSL goal reaching objective $J(\pi_n) = \sum_{\bar{s} \in \bar{S}} V^{\pi_n}(\bar{s}) \bar{\mu}_0(\bar{s})$.

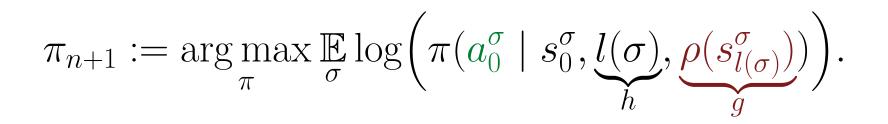
Conclusion

- Definitions command extension and segment distribution allowed for formal investigation of eUDRL/GCSL.
- The eUDRL recursion rewrite (3.1) helps to understand causes of eUDRL/GCSL non-optimality.
- We disproved eUDRL's convergence to the optimum for quite a large class of stochastic environments in Lemma 4.1.

$$\tau = (s_0, a_0, \dots, \underset{t}{s_t}, \underset{t}{a_t}, \dots, \underset{t+l(\sigma)}{s_{t+l(\sigma)}}, \dots, \underset{N}{s_N})$$

$$\sigma = (s_0^{\sigma}, a_0^{\sigma}, \dots, \underset{l(\sigma)}{s_{l(\sigma)}})$$

 σ evidences that a_0^{σ} might be good for reaching $\rho(s_{l(\sigma)}^{\sigma})$ in $l(\sigma)(=t'-t)$ steps



- The example demonstrates that there is no guarantee for monotonic improvement.
- This result applies to certain existent implementations [3, 1] that nevertheless produce useful results in practice.

Acknowledgements & References

* lemma 4.1:(eUDRL insensitivity to goal input at horizon 1) Let us have an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p_T, r, \mu_0)$ and its CE $\overline{\mathcal{M}} = (\overline{\mathcal{S}}, \mathcal{A}, \overline{p}_T, \overline{r}, \overline{\mu}_0, \rho)$, such that there exists a state $s \in \mathcal{S}$ and two goals $g_0 \neq g_1, g_0, g_1 \in \mathcal{G}$ such that $M_0 := \arg \max_{a \in \mathcal{A}} Q^*((s, 1, g_0), a)$ and $M_1 := \arg \max_{a \in \mathcal{A}} Q^*((s, 1, g_1), a)$ (optimal policy supports for g_0, g_1) have empty intersection $M_0 \cap M_1 = \emptyset$. Assume $Q_A^{\pi_n, g_i}(s, 1, a) \geq q_i(1-\delta)$ where delta $\delta > 0$ and $q_i := \max_a Q_A^{\pi_n, g_i}(s, 1, a)$. Then, when $\delta < 1$ (stochastic environment), the sequence (π_n) of policies produced by eUDRL recursion cannot tend to the optimal policy set.

This work was supported by the ERC Advanced Grant (no: 742870) and by the Swiss National Supercomputing Centre (CSCS, project: s1090). We also thank NVIDIA Corporation for donating a DGX-1 as part of the Pioneers of AI Research Award and to IBM for donating a Minsky machine.

- [1] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to reach goals via iterated supervised learning, 2019.
- [2] J. Schmidhuber. Reinforcement learning upside down: Don't predict rewards -- just map them to actions, 2019.
- [3] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmidhuber. Training agents using upside-down reinforcement learning, 2019.