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Summary

Upside‐Down Reinforcement Learning (UDRL) is an approach for solving RL
problems that does not require value functions and uses only supervised
learning[2, 3].
Ghosh et al. [1] proved that Goal‐Conditional Supervised Learning (GCSL)‐‐‐a
simplified version of UDRL‐‐‐optimizes a lower bound on goal‐reaching
performance.
Question: Does UDRL converge to the optimal policy in arbitrary
environments?
Here we show that for a specific episodic UDRL algorithm (eUDRL, including
GCSL), this is not the case, and give the causes of this limitation.
Assumptions: finite (discrete) environments, no function approximation,
unlimited number of samples.

Background

M = (S, A, pT , µ0, r) an MDP where:

S ,A ‐ finite state and action spaces
pT (s′|s, a) is a transition probability.
r(s′, s, a) deterministic reward
function.
µ0(s) initial state probability.

return Gt := ∑∞
k=0 r(St+1+k, St+k, At+1),

policy π(a|s)
state/action‐value functions:
V π(s) := Eπ[Gt|St = s; π],
Qπ(s, a) := Eπ[Gt|St = s, At = a; π].

In UDRL the agent takes (besides the state) an extra command input (h, g). We will
fix the command interpretation: ``reach goal g in h number of steps".
Objective: Become better at fulfilling commands
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Motivation: We extend the state space by the command to be able to view an
eUDRL agent as an ordinary agent on a slightly bigger MDP M̄.

Command extension (CE) of an MDP M = (S, A, pT , r, µ0) is the MDP M̄ =
(S̄, A, p̄T , r̄, µ̄0, ρ), where: (Items in this color has to be supplied in

addition to M)
ρ : S → G‐goal map, G‐goal set
S̄ := S × {h ≤ N} × G, N‐max.hor., S̄A := {(s, h, g) ∈ S̄|h = 0}‐absorbing states
µ̄0(s, h, g) := P(H0 = h, G0 = g|S0 = s)µ0(s)
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p̄T : g‐fixed, h‐decreases by 1 til 0, s‐evolves according to pT for h > 0 ;
r̄: non‐zero just from h = 1 =⇒ V π(s, h, g) = P(ρ(Sh) = g|S̄0 = (s, h, g); π).
Segment distribution Σ ∼ dπ

Σ ‐ analogy to the state visitation distribution,
segment ‐ a continuous chunk of the trajectory
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eUDRL learning algorithm

eUDRL [3] starts from an initial policy π0 and generates a sequence of policies (πn).
Each iteration consists of two steps:
1. a batch of episodes is generated using the current policy πn,
2. a new policy πn+1 is fitted to some action conditional of dπn
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∗ lemma 4.1:(eUDRL insensitivity to goal input at horizon 1) Let us have an
MDP M = (S, A, pT , r, µ0) and its CE M̄ = (S̄, A, p̄T , r̄, µ̄0, ρ), such that there
exists a state s ∈ S and two goals g0 ̸= g1, g0, g1 ∈ G such that M0 :=
arg maxa∈A Q∗((s, 1, g0), a) and M1 := arg maxa∈A Q∗((s, 1, g1), a) (optimal policy sup‐
ports for g0, g1) have empty intersection M0 ∩ M1 = ∅. Assume Qπn,gi

A (s, 1, a) ≥
qi(1−δ) where delta δ > 0 and qi := maxa Qπn,gi

A (s, 1, a). Then, when δ < 1 (stochas‐
tic environment), the sequence (πn) of policies produced by eUDRL recursion can‐
not tend to the optimal policy set.

eUDRL Non-Optimality in Stochastic Environments

eUDRL Recursion Rewrite
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πn+1(a|s, h, g) = P(AΣ
0 = a|SΣ

0 = s, l(Σ) = h, ρ(SΣ
l(Σ)) = g; πn) (3.1)

∝ P(ρ(SΣ
l(Σ)) = g|AΣ

0 = a, SΣ
0 = s, l(Σ) = h; πn)︸ ︷︷ ︸

Qπn,g
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· P(AΣ
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0 = s, l(Σ) = h; πn)︸ ︷︷ ︸
πA,n(a|s, h)

average policy

where
Qπn,g

A (s, h, a) = P(ρ(Sh) = g|A0 = a, S0 = s; πn)
πA,n(a|s, h) =

∑
h′≥h,g′∈G

πn(a|h′, g′, s)P(HΣ
0 = h′, GΣ

0 = g′|SΣ
0 = s, l(Σ) = h; πn)

Problem: "averaging" across goals g′, and horizons h′ is a problem.
E.g. πA,n is constant in g, everything has to be accounted in multiply by Qπn,g

A

step. (Formally see lemma 4.1 at the bottom∗)

Ex: (a0 ∈ M0): πn+1(a0|s, 1, g)

g0 g1

∝ P(ρ(s1) = g|A0 = a0, S0 = s; πn)

g0 g1

× πA,n(a0 | s, 1)

g0 g1

Demonstration

M : S := A := {0, 1},
µ0 : S0 := 0

M̄ : N := 1,G := S ,ρ := idS ,
µ̄0 : H0 := 1, G0|H0, S0 ∼ U(G)
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α ∈ [0.5, 1] ‐stochasticity,
α = 1‐deterministic pT ,
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1• Everything is constant for iteration> 0. • RMSVE and ∥πn−π∗∥∞ do not approach
0 for stochastic case (α < 1). Increasing the number of iterations or the sample size
does not help! • There is no monotony in GCSL goal reaching objective J(πn) =∑

s̄∈S̄ V πn(s̄)µ̄0(s̄).

Conclusion

Definitions command extension and segment distribution allowed for formal
investigation of eUDRL/GCSL.
The eUDRL recursion rewrite (3.1) helps to understand causes of
eUDRL/GCSL non‐optimality.
We disproved eUDRL's convergence to the optimum for quite a large class of
stochastic environments in Lemma 4.1.
The example demonstrates that there is no guarantee for monotonic
improvement.
This result applies to certain existent implementations [3, 1] that
nevertheless produce useful results in practice.
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