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Summary

= Upside-Down Reinforcement Learning (UDRL) is an approach for solving RL

oroblems that does not require value functions and uses only supervised

earning|2, 3].

= Ghosh et al. [1] proved that Goal-Conditional Supervised Learning (GCSL)---a
simplified version of UDRL---optimizes a lower bound on goal-reaching
performance.

= Question: Does UDRL converge to the optimal policy in arbitrary
environments?
Here we show that for a specific episodic UDRL algorithm (eUDRL, including
GCSL), this is not the case, and give the causes of this limitation.

= Assumptions: finite (discrete) environments, no function approximation,
unlimited number of samples.

Background

M = (S, A, pp, 1o, ) an MDP where:

. = return Gy == Y72, r(S S At),
= S, A - finite state and action spaces 0= DR TStk St Arr1)

| N N = policy 7(als)
o '|s, a) is a transition probability. . .
pr(s'ls, a) P Y« state/action-value functions:

V7(s) = E |Gt S = s;7],
Q" (s,a) = E|G|S; = 5, Ay = a; 7.

= r(s', s,a) deterministic reward
function.

= uo(s) initial state probability.

In UDRL the agent takes (besides the state) an extra command input (h, g). We will
fix the command interpretation: ~ reach goal ¢ in A number of steps".
Objective: Become better at fulfilling commands

action M-state horizon goal
™ a | s , h , g)

\ . J

s — M state
Motivation: We extend the state space by the command to be able to view an
eUDRL agent as an ordinary agent on a slightly bigger MDP M.

Command extension (CE) of an MDP M = (S, A, pr,r, ug) is the MDP M =
(87 A)ﬁTa 7:7 /107 p)’ where:

(Items in this color has to be supplied in
addition to M)
= p:S — G-goal map, G-goal set

* S =Sx{h<N}xG, N-max.hor., 84 := {(s, h,g) € S|h = 0}-absorbing states
" (s, h, g) =P(Hy=h,Gy = g|So = s)po(s)

7T7
(SO\ ﬂ-’pT> / S1 \ ﬂ-,pT> ce (Sh—l\ o ’ (Sh\
Bl 70 [ p_1] O 1| Welsn) =g} | o | eS8y

\ 9/ \ g / \ 9 /) (ifthit g

pr. g-fixed, h-decreases by 1 til O, s-evolves according to py for A > 0 ;
r: non-zero just fromh =1 = V7(s, h,g) = P(p(Sy) = 9|So = (s, h,g); 7).

Segment distribution X ~ d5. - analogy to the state visitation distribution,
segment - a continuous chunk of the trajectory

=) ,SF , HX G, Az, ST AT .
length the first state

* ) SZZ(]Z) )
the last state

eUDRL learning algorithm

eUDRL [3] starts from an initial policy my and generates a sequence of policies (m,).
Each iteration consists of two steps:

1. a batch of episodes is generated using the current policy m,
2. a new policy m, Is fitted to some action conditional of dy"

\/t \/t/
T = (50,00, -+, St, Gty -y Stil(o)s - -5 5N)

2%

2 ST

o evidences that af might be good for reaching p(sj,,)) in i(o)(=t' — ) steps

- \/0' 0O
o= (s, af, ..

M1 1= arg max Elog (77(@8 | s, 1), p(SE’@)))-
h g

* lemma 4.1:(eUDRL insensitivity to goal input at horizon 1) Let us have an
MDP M = (S, A,pr,r, 1o) and its CE M = (S, A, pr, 7, i, p), such that there
exists a state s € S and two goals g9 # g1, 90,1 € G such that M, =
arg max,. 4 @*((s, 1, go), a) and My := argmax,. 4 Q*((s, 1, g1), a) (optimal policy sup-
ports for gy, g1) have empty intersection My N M; = ). Assume Q' (s,1,a) >
q;(1—9) where delta § > 0and ¢; := max, Q’y""(s,1,a). Then, when § < 1 (stochas-
fic environment), the sequence (m,,) of policies produced by eUDRL recursion can-

not tend to the optimal policy set.
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eUDRL Non-Optimality in Stochastic Environments

eUDRL Recursion Rewrite

Tn4+1 = arg;nax ;”log (71'(&8 | 887@7 IO(SZU(U))))
h g

h, ,O(SZZ(Z)) — g, 7Tn) (3.1
him,) - P(AS = alS5 = 5,U(X) = h;m,)

J/ \ J/
N

TAn(als, h)

Tns1(als, k, g) = P(A5 = alSy = s,1(2)
x B(p(ST) = o147 = a, S5 = 5, 1)

A7 (s, h,a)

average Q average policy

where
(s, h,a) =P(p(Sh) = g|Ay = a, Sy = s; )
Tan(als,h) = > mall, g, s)P(Hy =k G5 = ¢|S; = s,1(X) = h; )
h>h,g'eg
Problem: "averaging" across goals ¢, and horizons k' is a problem.

F.g. ma, IS constant in g, everything has to be accounted in multiply by Q7"
step. (Formally see lemma 4.1 at the bottom?)

Ex: (CL() c MO)I 7Tn+1(a0|8, 1, g) X P(p(s1) = glAy = ay, Sy = s;m,) X WA’n(CL() | S, 1)
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M:S=A:={0,1},
Lo Sy =10

M: N =1G = S,p = idg,
/_LQ : H() .= 1, G0|H(), S() ~ Z/{(Q)

a € 0.5, 1] -stochasticity,
a = 1-deterministic pp,

e Everything is constant for iteration > 0. e RMSVE and |7, —7*|| s do not approach
O for stochastic case (o < 1). Increasing the number of iterations or the sample size
does not help! e There is no monotony in GCSL goal reaching objective J(m,) =

2 5e8 Vﬁn(g)/jo(g).

Conclusion

= Definitions command extension and segment distribution allowed for formal
investigation of eUDRL/GCSL.

= The eUDRL recursion rewrite (3.1) helps to understand causes of
eUDRL/GCSL non-optimality.

= We disproved eUDRL's convergence to the optimum for quite a large class of
stochastic environments in Lemma 4.1.

= The example demonstrates that there is no guarantee for monotonic
Improvement.

= This result applies to certain existent implementations [3, 1] that
nevertheless produce useful results in practice.
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