

Neural Differential Equations for Learning to Program Neural Nets Through Continuous Learning Rules

Kazuki Irie

Francesco Faccio

Jürgen Schmidhuber

New Orleans, LA, USA, Nov/Dec, 2022 1

NeurIPS 2022

Background: Neural ODEs for Sequences

Neural Controlled DEs (NCDEs) Kidger et al. NeurIPS 2020

- + Elegant extension of Neural ODEs for Sequence Processing
- + Good empirical performance for supervised time series classification
- Only one architecture available, akin to the "vanilla RNN"
- Scalability limitation: requires a $\mathbb{R}^d o \mathbb{R}^{d imes d_{ ext{in}}}$ mapping NN

$$oldsymbol{h}(t) = oldsymbol{h}(t_0) + \int_{s=t_0}^t oldsymbol{F}_{ heta}(oldsymbol{h}(s)) doldsymbol{x}(s) = oldsymbol{h}(t_0) + \int_{s=t_0}^t oldsymbol{F}_{ heta}(oldsymbol{h}(s)) oldsymbol{x}'(s) ds$$
 $oldsymbol{F}_{ heta}(oldsymbol{h}(s)) \in oldsymbol{\mathbb{R}}^{d imes d_{ ext{in}}} oldsymbol{H}$

Hidden state $m{h}(t) \in \mathbb{R}^d$ evolves as a function of $m{x}(t) \in \mathbb{R}^{d_{ ext{in}}}$

Background: Fast Weight Programmers (FWPs)

- NNs that learn to **program** other NNs by **generating rapid weight changes**
- General-purpose auto-regressive sequence processor
- Outer product version: Transformers with linearised self-attention
- Sequential **dynamics** based on weight update rules/programming instructions/learning rules that have a **straightforward ODE counterpart**

At step
$$n$$
Input $\boldsymbol{x}_n \in \mathbb{R}^{d_{\mathrm{in}}}$ Output $\boldsymbol{y}_n \in \mathbb{R}^{d_{\mathrm{out}}}$ $\beta_n, \boldsymbol{q}_n, \boldsymbol{k}_n, \boldsymbol{v}_n = \boldsymbol{W}_{\mathrm{slow}} \boldsymbol{x}_n$ $\boldsymbol{W}_n = \boldsymbol{W}_{n-1} + \sigma(\beta_n)(\boldsymbol{v}_n - \boldsymbol{W}_{n-1}\phi(\boldsymbol{k}_n)) \otimes \phi(\boldsymbol{k}_n)$ $\boldsymbol{y}_n = \boldsymbol{W}_n \phi(\boldsymbol{q}_n)$ "New = Old + Update"

General Idea

Discrete-Time Weight Update Equation

$$eta_n, oldsymbol{q}_n, oldsymbol{k}_n, oldsymbol{v}_n = oldsymbol{W}_{ ext{slow}} oldsymbol{x}_n$$

$$\boldsymbol{W}_n = \boldsymbol{W}_{n-1} + \sigma(\beta_n)(\boldsymbol{v}_n - \boldsymbol{W}_{n-1}\phi(\boldsymbol{k}_n)) \otimes \phi(\boldsymbol{k}_n)$$



Continuous-Time Counterpart

$$\boldsymbol{W}(t) = \boldsymbol{W}(t_0) + \int_{s=t_0}^{t} \boldsymbol{F}_{\theta}(\boldsymbol{W}(s), \boldsymbol{x}(s)) ds$$

This work

We introduce continuous-time counterparts of linear Transformers/FWPs that

- Can directly replace existing Neural CDEs/ODEs for sequence processing
- Conceptually scale better than existing NCDEs
- Empirically outperform existing Neural ODE/CDE models

We propose multiple model variations, depending on

- Smoothness of input control signals
- and compare different *learning rule parameterisations* (Hebb, Oja, Delta)

Example: Neural CDE based FWPs

Assume differentiable control signals $m{x}:t\mapstom{x}(t)\in\mathbb{R}^{d_{\mathrm{in}}}$

$$oldsymbol{W}(t) = oldsymbol{W}(t_0) + \int_{s=t_0}^t oldsymbol{\mathsf{F}}_{ heta}(oldsymbol{W}(s),oldsymbol{x}(s),oldsymbol{x}'(s))oldsymbol{x}'(s)ds$$
 $oldsymbol{W}_k oldsymbol{x}(s) \otimes oldsymbol{W}_v oldsymbol{x}'(s)$
Hebb

$$= \sigma(\beta(s)) \begin{cases} (\boldsymbol{W}_k \boldsymbol{x}(s) - \boldsymbol{W}(s)^\top \boldsymbol{W}_v \boldsymbol{x}'(s)) \otimes \boldsymbol{W}_v \boldsymbol{x}'(s) & \text{Oja} \\ (\boldsymbol{W}_v \boldsymbol{x}(s) - \boldsymbol{W}(s) \boldsymbol{W}_k \boldsymbol{x}'(s)) \otimes \boldsymbol{W}_k \boldsymbol{x}'(s) & \text{Ola} \end{cases}$$

- Scalable: outer product based vector field
- *Expressive:* First: sum rank-1 updates over time (above), then: output:

$$\boldsymbol{y}(T) = \begin{cases} \boldsymbol{W}(T)^{\top} \boldsymbol{W}_{q} \boldsymbol{x}(T) & \text{Hebb and Oja} \\ \boldsymbol{W}(T) \boldsymbol{W}_{q} \boldsymbol{x}'(T) & \text{Delta} \end{cases}$$

(vs. **basic NCDEs** with a rank-1 vector field: **scalable but not expressive**)

Speech Commands & PhysioNet Sepsis

Туре	Model	Speech Commands	PhysioNet Sepsis	
Type			OI	no-OI
Direct NODE	GRU-ODE [4]*	47.9 (2.9)	85.2 (1.0)	77.1 (2.4)
	Hebb Oja Delta	82.8 (1.1) 85.4 (0.9) 81.5 (3.8)	90.4 (0.4) 88.9 (1.4) 89.8 (1.0)	82.9 (0.7) 82.9 (0.5) 84.5 (2.9)
CDE	NCDE [4]*	89.8 (2.5)	88.0 (0.6)	77.6 (0.9)
	Hebb Oja Delta	89.5 (0.3) 90.0 (0.7) 90.2 (0.2)	89.9 (0.6) 91.2 (0.4) 90.9 (0.2)	85.7 (0.3) 85.1 (2.5) 84.5 (0.7)

FWP variants largely outperform the NODE baseline Also obtain slight improvements over the baseline in the NCDE case

Speech Commands & PhysioNet Sepsis

Туре	Model	Speech Commands	PhysioNet Sepsis	
1)10			OI	no-OI
Direct NODE	GRU-ODE [4]*	47.9 (2.9)	85.2 (1.0)	77.1 (2.4)
	Hebb Oja Delta	82.8 (1.1) 85.4 (0.9) 81.5 (3.8)	90.4 (0.4) 88.9 (1.4) 89.8 (1.0)	82.9 (0.7) 82.9 (0.5) 84.5 (2.9)
CDE	NCDE [4]*	89.8 (2.5)	88.0 (0.6)	77.6 (0.9)
	Hebb Oja Delta	89.5 (0.3) 90.0 (0.7) 90.2 (0.2)	89.9 (0.6) 91.2 (0.4) 90.9 (0.2)	85.7 (0.3) 85.1 (2.5) 84.5 (0.7)

Particularly large improvements in the challenging no-OI setting Overall, no clear winner among different learning rules for these tasks

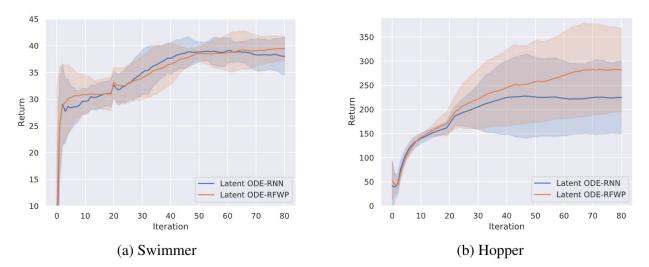
EigenWorms (very long sequences)

Model	Sig-Depth	Step	Test Acc. [%]
NRDE [37]*	2	4	83.8 (3.0)
Hebb Oja Delta	2	4	45.6 (5.9) 46.7 (7.5) 87.7 (1.9)
NCDE [37]*	1	4	66.7 (11.8)
Hebb Oja Delta	1	4	41.0 (6.5) 49.7 (9.9) 91.8 (3.4)

Very large improvements over the best existing ODE based model (NRDE) Delta rule clearly outperforms others

Model based RL, MuJoCo

We also propose FWP analogs to Latent ODE-RNNs that work as well or better than Latent ODE-RNNs



Treat the case where we need to directly work with discrete observations Experiments in the appendix: MuJoCo with action repetitions / semi-MDP settings

Thank you for your attention.

https://github.com/IDSIA/neuraldiffeq-fwp

Hope to see you at the poster!