

Neural Differential Equations for Learning to Program Neural Nets

Through Continuous Learning Rules

Kazuki Irie¹ Francesco Faccio¹ Jürgen Schmidhuber ^{1, 2}

¹The Swiss AI Lab, IDSIA, USI & SUPSI Switzerland ²Al Initiative, KAUST Saudi Arabia

Neural ODEs for Sequence Processing

- Original **Neural ODEs**: continuous-depth version of (feedforward) residual nets
- There are extensions to **process sequences**, e.g.,

Neural Controlled Differential Equations Kidger et al. 2020 Hidden state $m{h}(t) \in \mathbb{R}^d$ Differentiable control signal $m{x}(t) \in \mathbb{R}^{d_{ ext{in}}}$

$$m{h}(t) = m{h}(t_0) + \int_{s=t_0}^t m{F}_{ heta}(m{h}(s)) dm{x}(s)$$
 "vanilla" RNN in the continuous-time $= m{h}(t_0) + \int_{s=t_0}^t m{F}_{ heta}(m{h}(s)) m{x}'(s) ds$ domain

- Good empirical performance (outperform other ODE based sequence processors), but
- Scalability limitation: $\mathbb{R}^d \to \mathbb{R}^{d \times d_{\text{in}}}$

Fast Weight Programmers (FWPs)

- NN that learns to program other NNs by rapidly generating weight changes
- Outer product version: linear Transformer
- Katharopoulos - General purpose sequence processor et al. 2020 etc.

Example: DeltaNet Schlag et al. 2021

At each step n

- Input $oldsymbol{x}_n \in \mathbb{R}^{d_{ ext{in}}}$ $eta_n, oldsymbol{q}_n, oldsymbol{k}_n, oldsymbol{v}_n$ = $oldsymbol{W}_{ ext{slow}} oldsymbol{x}_n$
- Fast Weight $m{W}_n = m{W}_{n-1} + \sigma(eta_n)(m{v}_n m{W}_{n-1}\phi(m{k}_n)) \otimes \phi(m{k}_n)$ Matrix
- Output $oldsymbol{y}_n \in \mathbb{R}^{d_{ ext{out}}}$

To hear more about FWPs: Visit our poster on Friday

"Memory in Artificial and Real Intelligence" WS

You only have 2 min?

We introduce continuous-time counterparts of Fast Weight Programmers (FWP)/ linear Transformers by combining FWPs with Neural ODEs

- \rightarrow We obtain a new type of Neural ODE/CDE based sequence processors, that
- \rightarrow Conceptually **scale better** than existing Neural CDE models
- \rightarrow Empirically **outperform** existing Neural CDE based models

We propose multiple model variations, depending on

- \rightarrow Smoothness of input control signals, and
- \rightarrow Different learning rule parameterisations (Hebb, Oja, Delta)

General Idea:

Discrete-time Weight Update

$$\mathbf{W}_n = \mathbf{W}_{n-1} + \sigma(\beta_n)(\mathbf{v}_n - \mathbf{W}_{n-1}\phi(\mathbf{k}_n)) \otimes \phi(\mathbf{k}_n)$$

Continuous-time Counterpart

Backward pass: Continuous adjoint method

$$\mathbf{W}(t) = \mathbf{W}(t_0) + \int_{s=t_0}^{t} \mathbf{F}_{\theta}(\mathbf{W}(s), \mathbf{x}(s)) ds$$

Forward pass: ODE solver

Code: github.com/IDSIA/neuraldiffeq-fwp

Continuous-Time FWPs NCDE FWPs

Key properties

Differentiable Input

Control Signal

 $(\boldsymbol{W}_{k}\boldsymbol{x}(s) - \boldsymbol{W}(s)^{\top}\boldsymbol{W}_{v}\boldsymbol{x}'(s)) \otimes \boldsymbol{W}_{v}\boldsymbol{x}'(s)$ Learning rate $(W_v x(s) - W(s)W_k x'(s)) \otimes W_k x'(s)$

Scalable: outer product-based vector field

Expressive: Sum all rank-1 updates in the continuous-time domain, then use the resulting weight matrix to compute the output (i.e., sum before matrix multiplication) vs. basic NCDEs with a rank-1 vector field: scalable but not expressive

Good empirical performance (Transformer!)

(rank-1 mat. used in isolation)

Direct NODE FWPs

(piece-wise) Continuous/Bounded Input Control Signal $oldsymbol{x}(t) \in \mathbb{R}^{d_{ ext{in}}}$

 $\beta_n, \boldsymbol{q}_n, \boldsymbol{k}_n, \boldsymbol{v}_n = \boldsymbol{W}_{\mathrm{slow}} \boldsymbol{x}_n$

- Similar idea to (left) but w/o derivative of control signal
- Theoretically NCDEs are more powerful (Kidger et al. 2020), but
- With our parameterisations, performance gap is small

$$m{W}(t) = m{W}(t_0) + \int_{s=t_0}^t m{F}_{ heta}(m{W}(s),m{x}(s)) ds$$
 $m{q}(T) = m{W}_qm{x}(T)$ Query

Output $\boldsymbol{y}(T) = \boldsymbol{W}(T)\boldsymbol{q}(T)$

 $[\beta(s), \boldsymbol{k}(s), \boldsymbol{v}(s)] = \boldsymbol{W}_{\mathrm{slow}} \boldsymbol{x}(s)$

Hebb-style ${m v}(s) \otimes \left({m k}(s) - {m W}(s)^{ op} {m v}(s)\right)$ $F_{\theta}(W(s), x(s)) = \sigma(\beta(s))$ Oja-style Delta-style Learning rate

Time Series Classification Tasks

Speech Commands & PhysioNet Sepsis

Туре	Model	Speech Commands	PhysioNet Sepsis	
Type			OI	no-OI
Direct NODE	GRU-ODE	47.9 (2.9)	85.2 (1.0)	77.1 (2.4)
	Hebb Oja Delta	82.8 (1.1) 85.4 (0.9) 81.5 (3.8)	90.4 (0.4) 88.9 (1.4) 89.8 (1.0)	82.9 (0.7) 82.9 (0.5) 84.5 (2.9)
CDE	NCDE	89.8 (2.5)	88.0 (0.6)	77.6 (0.9)
	Hebb Oja Delta	89.5 (0.3) 90.0 (0.7) 90.2 (0.2)	89.9 (0.6) 91.2 (0.4) 90.9 (0.2)	85.7 (0.3) 85.1 (2.5) 84.5 (0.7)

- FWPs **outperform** the existing ODE/CDE baselines
- No clear winner among different learning rules

EigenWorms	Model		Sig-Depth	Step	Test Acc. [%]
longsogueness	NRDE	1	2	4	83.8 (3.0)
- long sequences	Hebb		2	4	45.6 (5.9)
(> 4000 timesteps)	Oja				46.7 (7.5)
- The delta rule	Delta				87.7 (1.9)
- The della rule	NCDE	£	1	4	66.7 (11.8)
outperform others			1	4	
' '	Hebb		1	4	41.0 (6.5)
	Oja				49.7 (9.9)
	Delta				91.8 (3.4)

Overall:

- FWPs outperform the best existing Neural ODE/CDE based models, but
- There exist **discrete-time models** that perform equally well or better, e.g., LEM for Eigenworms GRU-D for PhysioNet Sepsis no-OI

Model-based Reinforcement Learning

What if we need to directly work with irregularly sampled discrete inputs? FWP analogs to Latent ODE-RNNs

$$\boldsymbol{u}_n = \text{ODESolve}(\boldsymbol{f}_{\theta_1}, \boldsymbol{h}_{n-1}, t_{n-1}, t_n)$$

 $\boldsymbol{h}_n, \boldsymbol{W}_n = \text{FWP}([\boldsymbol{x}_n, \boldsymbol{u}_n], \boldsymbol{W}_{n-1}; \theta_2)$

- Setting: MuJoCo with irregularly timed observations (semi-MDP; repeated actions)
- FWPs perform as well or better than Latent ODE-RNNs

