Learning Useful Representations
of Recurrent Neural Network
Weight Matrices

Vincent Herrmann, Francesco Faccio, Jurgen Schmidhuber

Istituto

Dalle Molle
di studi

ICML 2024

Learning RNN Weight Representations

* RNNs are universal computers

* Weight matrices are their program

Yt
1
Ay

Applications:

 Reinforcement Learning 0 .

* |mplicit Neural Representations H

I
S
0]°

* |nterpretability

Three Ingredients

 Datasets
* Learning / Pre-Training method

* RNN Weight encoder architecture

Datasets
Two RNN ‘Model Zoos’

1000 LSTM training runs per dataset, 9 snapshots per run

« Each LSTM is trained on a different task from a task family

» Datapoint: LSTM weights @, 100 rollouts/trajectories, metadata

61 S1 X1 V15 X0, X,y - - 92 St 1 X1, V15 X9, Xg, ... 93 St X1, V15 X9, Xo, ...
Sh 1 X[, V15 Xgy Xo,y ... Sy 1 X[, V15 Xgy Xo,y ... Sy 1 X1, V15 Xg5 Xo,s ...
S50 ... S0 ... S50 ...
Training Step: 2000 ' Training Step: 5000 ' Training Step: 100
Accuracy: 78% Accuracy: 85% Accuracy: 49%
Task: 36° Task: 97° Task: 262°

Formal Languages Dataset

* Autoregressive models of 216 different formal languages

. Language family: L, . . . = {a"""p" """ Med" e | n € N}

S
S
o
o

 Examples Liiy;: el

Q
S
S
O
¥
¥

Q
Q
S
S
S
™
S
U
U
U

L1,2,1,2 :

Q
Q
Q
S
S
~
S
9
9
U
U

L2,1,3,1 :

Tiled Sequential MNIST Dataset

» (Classifiers of tiled sequentialised MNIST digits (prediction at every step)

 Every model is trained on a different rotation angle of the digits

I § Fh

o = F it i
 Examples 17°: SR 1, e

_=..F N "l

1™ i sl

o [g P i
74° - O i L 4
- 1 i ol

L L

M

23 10 . § T4
) 1 i Af 4

il i 1

1 AE

Weight Space Symmetries

Challenge and Opportunity

Huge number of equivalent networks
QO

 Hidden Neuron Permutation @ O O

O O

» Sign Flip / Scaling
(depends on non-linearity)

O

@,

O

O

@,

O

O

Self-Supervised Training Method

» Reconstruction or naive contrastive methods? & Weight Space Symmetries &

* |nstead. Emulate the functionality of the network!

Original r_’ (Reverse KL
RNN Divergence)
Function

X

Weights Function Function X

Encoder Embedding Function Emulator

» Encoder E generates representation E£(6) of RNN f,

compare:

 Emulator A is conditioned on E(€) and imitates f, ’;g”ggggy%% 2020, "Fast Adaptatior

RNN Weight Encoder Architectures

e Distinction: Mechanistic Encoders & Functionalist Encoders

» Mechanistic encoders look at the weights 6 directly

 Functionalist encoders look at the input-output mapping of fe

Layer-Wise Statistics & MLP

0

ﬁﬁ

Flattened Weigh

0

ﬁﬁ

MLP

ts & MLP

E®©) 0
5 MLP

E(O) 0

Non-Interactive Probing

=
b &

Mechanistic

Functionalist

Layer-Wise Statistics & MLP (Mechanistic)

 Concatenate various global statistics of each weight matrix and feed into MLP

e |nvariant to hidden neuron permutation =

* Not universal -

Layer-Wise Statistics & MLP Parameter Transformer Non-Interactive Probing
0) E(6) 0 E©) 0 (E(0)
,_lﬁ| ﬁ ,I‘T| LSTM
B_H Transformer Aﬂ Fj_j | |
f‘e
J b 000000008 | ﬁ]

Interactive Probing

0 |) E(9) 0 ﬁ =
| 3 g &

Mechanistic Functionalist

DWSNet

Flattened Weights & MLP

Layer-Wise Statistics & MLP (Mechanistic)

 Concatenate various global statistics of each weight matrix and feed into MLP

e |nvariant to hidden neuron permutation =

 Not universal -

¢ E(O)

compare:
Unterthiner et al., 2020, “Predicting
Neural Network Accuracy from Weights”

Flattened Weights & MLP (Mechanistic)

* Flatten all weights into one big vector and feed into MLP

 Not invariant to hidden neuron permutation -~

e Universal =

E(O)

| S—

compare:
Faccio, Kirsch, Schmidhuber, 2020,
“Parameter-Based Value Functions”

Herrmann, Kirsch, Schmidhuber, 2022,
“Learning One Abstract Bit at a Time
through Self-Invented Experiments
Encoded as Neural Networks”

Parameter Transformer (Mechanistic)

* Feed neuron weight vectors as sequence to a transformer model

| —_—
 —

 Not invariant to hidden neuron permutation -~

e Universal .-
9 E©0)
Transformer I
compare:
Schurholt, Kostadinov, Borth, 2021,
“Self-Supervised Representation

Learning on Neural Network \Weights
for Model Characteristic Prediction”

Deep Weight Space Net (Mechanistic)

* Equivariant weight processing modules followed by invariant pooling layer

* |nvariant precisely to hidden neuron permutation .=

e Universal =

compare:
Navon et al., 2023, “Equivariant
Architectures for Learning in Deep
Weight Spaces”

Zhou et al., 2023, “Permutation
Equivariant Neural Functionals”

Kirsch, Schmidhuber, 2020, “Meta
Learning Backpropagation and
Improving it”

Non-Interactive Probing (Functionalist)

» Fixed but learnable probing sequences are given to f,

» Based on the corresponding probing outputs, £(6) is computed

e Invariant to everything that leaves f,'s functionality intact .=

» Not fully universal

E(O)
0
| < LSTM) -
| iy (|) compare:
= - Jo Harb et al., 2020, “Policy Evaluation
i t] N Networks”

Faccio et al., 2022, “Goal-Conditioned
Generator of Deep Policies”

Non-Interactive Probing (Functionalist)

» Fixed but learnable probing sequences are given to f,

» Based on the corresponding probing outputs, £(6) is computed

e Invariant to everything that leaves f,'s functionality intact .=

 Not fully universal ™

E. m» E. | Ex — E. —| E: —»[E(H))

os 1 I i FOS Embsang
[EFo N\ [Fo\ [Fo\
ts E ts
0— |l f g[f _’i|: f compare:
(PN | T@ F r Harb et al., 2020, “Policy Evaluation
\ EI \ EI \ EI Networks

‘ 6 6 Faccio et al., 2022, “Goal-Conditioned
Generator of Deep Policies”

Interactive Probing (Functionalist)

* Probing sequences are dynamically generated by core LSTM

» Next probing inputs depend on f,’s response to all previous probing inputs

e Invariant to everything that leaves f,'s functionality intact .=

* Not fully universal -

E(0)

: W ismm —

0 -/

compare:
Schmidhuber, 2015, “On Learning to
Think”

Interactive Probing (Functionalist)

* Probing sequences are dynamically generated by core LSTM

» Next probing inputs depend on f,’s response to all previous probing inputs

e Invariant to everything that leaves f,'s functionality intact .=

* Not fully universal -

B i I i Ee Function
VAN VANV
Ty T&l Ty

\ &/ |\ E,A 7|\ E,A / compare:

__ __ __ Schmidhuber, 2015, “On Learning to
Think”

Functionalist Approach: Theoretical Results

What’s the difference between interactive and non-interactive probing?

T details in the paper

Results
* (General upper bound for required interactions is the same

* |n certain settings, interactive probing is exponentially more efficient

Cloned Performance

Pre-Training Results

Formal Languages

Original vs. Emulated Validation Loss

1.0 >
- == ldentity e .
® Layer-Wise Statistics | / 0.05 0.04 0.05
m Flattened Weights
0.8 Vv Parameter Transformer
A DWSNet
& Non-Interactive Probing
% Interactive Probing
0.6 7
. Layer-Wise Statistics
o [E mmm Flattened Weights
/ B Parameter Transformer
B DWSNet
0.2 S , .
Z m=m Non-Interactive Probing
/ ‘ B |nteractive Probing
0.0 m—a— = ‘A‘ /) D I I B R

0.0 0.2 0.4 0.6 0.8 1.(I I
Original Performance

Functionalist

Sequential MNIST

Original vs. Emulated

1.0
0.8
()
O
S 0.6
E
£
()
[a
k5
204
o
© - ldentity
® Layer-Wise Statistics
m Flattened Weights
0.2
v Parameter Transformer
A DWSNet
, & Non-Interactive Probing
’ % Interactive Probing
0.0 7
0.0 0.2 0.4 0.6 0.8 1.0

Original Performance

Validation Loss

0.067

0.024

0.0170.017

Functionalist

Learned Embedding Spaces

Formal Languages

Interactive Fingerprinting Embeddings (PCA)

‘o

-
o

I
©
o0

L—2,2,—2

Task / Language
~ o
Accuracy

|
O
N

|
O
o

Comparison:
t-SNE of weights

Task / Language

Downstream Results

Predictor MLP on top of learned representations

Formal Languages

Task prediction loss Accuracy prediction loss

0.39 0.38 0.39

. O. 0.035 0.032
I 0. 29 0.30
0.020
0.18 0.015 0.015
Layer-Wise Statistics 001 0.009

mam Flattened Weights 0. 010 0. 009

B Parameter Transformer 0. 007 0. 007 0.007

mmm DWSNet

s Non-Interactive Probing

I |[nteractive Probing
D P R T

Pre-Trained Supervised end-to-end Pre-Trained Supervised end-to-end

more results in the paper

Conclusion
Learning RNN Weight Representations

 [Two BRNN ‘Model Zoo’ datasets

 Emulation-based pre-training method

* Distinction between mechanistic and functionalist weight encoders
* Two novel functionalist encoder types

 Comparison of six different RNN weight encoder architectures

Functionalist encoders are superior at complex tasks

Byt

Code & Datasets

Thank you!

