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Learning RNN Weight Representations

* RNNs are universal computers

* Weight matrices are their program
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Applications:
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* |nterpretability



Three Ingredients

 Datasets
* Learning / Pre-Training method

* RNN Weight encoder architecture



Datasets
Two RNN ‘Model Zoos’

1000 LSTM training runs per dataset, 9 snapshots per run

« Each LSTM is trained on a different task from a task family

» Datapoint: LSTM weights @, 100 rollouts/trajectories, metadata

61 S1 X1 V15 X0, X,y - - 92 St 1 X1, V15 X9, Xg, ... 93 St X1, V15 X9, Xo, ...
Sh 1 X[, V15 Xgy Xo,y ... Sy 1 X[, V15 Xgy Xo,y ... Sy 1 X1, V15 Xg5 Xo,s ...
S50 ... S0 ... S50 ...
Training Step: 2000 ' Training Step: 5000 ' Training Step: 100
Accuracy: 78% Accuracy: 85% Accuracy: 49%
Task: 36° Task: 97° Task: 262°




Formal Languages Dataset

* Autoregressive models of 216 different formal languages

. Language family: L, . . . = {a"""p" """ Med" e | n € N}
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Tiled Sequential MNIST Dataset

» (Classifiers of tiled sequentialised MNIST digits (prediction at every step)

 Every model is trained on a different rotation angle of the digits
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Weight Space Symmetries

Challenge and Opportunity

Huge number of equivalent networks
QO

 Hidden Neuron Permutation @ O O

O O

» Sign Flip / Scaling
(depends on non-linearity)
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Self-Supervised Training Method

» Reconstruction or naive contrastive methods? & Weight Space Symmetries &

* |nstead. Emulate the functionality of the network!

Original r_’ (Reverse KL
RNN Divergence)
Function

X

Weights Function Function X

Encoder Embedding Function Emulator

» Encoder E generates representation E£(6) of RNN f,

compare:

 Emulator A is conditioned on E(€) and imitates f, ’;g”ggggy%% 2020, "Fast Adaptatior



RNN Weight Encoder Architectures

e Distinction: Mechanistic Encoders & Functionalist Encoders

» Mechanistic encoders look at the weights 6 directly

 Functionalist encoders look at the input-output mapping of fe
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Layer-Wise Statistics & MLP (Mechanistic)

 Concatenate various global statistics of each weight matrix and feed into MLP

e |nvariant to hidden neuron permutation =

* Not universal -

Layer-Wise Statistics & MLP Parameter Transformer Non-Interactive Probing
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Layer-Wise Statistics & MLP (Mechanistic)

 Concatenate various global statistics of each weight matrix and feed into MLP

e |nvariant to hidden neuron permutation =

 Not universal -

¢ E(O)

compare:
Unterthiner et al., 2020, “Predicting
Neural Network Accuracy from Weights”



Flattened Weights & MLP (Mechanistic)

* Flatten all weights into one big vector and feed into MLP

 Not invariant to hidden neuron permutation -~

e Universal =

E(O)

| S—

compare:
Faccio, Kirsch, Schmidhuber, 2020,
“Parameter-Based Value Functions”

Herrmann, Kirsch, Schmidhuber, 2022,
“Learning One Abstract Bit at a Time
through Self-Invented Experiments
Encoded as Neural Networks”



Parameter Transformer (Mechanistic)

* Feed neuron weight vectors as sequence to a transformer model

| —_—
 —

 Not invariant to hidden neuron permutation -~

e Universal .-
9 E©0)
Transformer I
compare:
Schurholt, Kostadinov, Borth, 2021,
“Self-Supervised Representation

Learning on Neural Network \Weights
for Model Characteristic Prediction”



Deep Weight Space Net (Mechanistic)

* Equivariant weight processing modules followed by invariant pooling layer

* |nvariant precisely to hidden neuron permutation .=

e Universal =

compare:
Navon et al., 2023, “Equivariant
Architectures for Learning in Deep
Weight Spaces”

Zhou et al., 2023, “Permutation
Equivariant Neural Functionals”

Kirsch, Schmidhuber, 2020, “Meta
Learning Backpropagation and
Improving it”



Non-Interactive Probing (Functionalist)

» Fixed but learnable probing sequences are given to f,

» Based on the corresponding probing outputs, £(6) is computed

e Invariant to everything that leaves f,'s functionality intact .=

» Not fully universal

E(O)
0
| < LSTM ) -
| iy (| ) compare:
= - Jo Harb et al., 2020, “Policy Evaluation
i t] N Networks”

Faccio et al., 2022, “Goal-Conditioned
Generator of Deep Policies”



Non-Interactive Probing (Functionalist)

» Fixed but learnable probing sequences are given to f,

» Based on the corresponding probing outputs, £(6) is computed

e Invariant to everything that leaves f,'s functionality intact .=

 Not fully universal ™

E. m» E. | Ex — E. —| E: —»[E(H))
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[EFo N\ [Fo\ [ Fo\
ts E ts
0— |l f g[ f _’i|: f compare:
(PN | T@ F r Harb et al., 2020, “Policy Evaluation
\ EI \ EI \ EI Networks

‘ 6 6 Faccio et al., 2022, “Goal-Conditioned
Generator of Deep Policies”



Interactive Probing (Functionalist)

* Probing sequences are dynamically generated by core LSTM

» Next probing inputs depend on f,’s response to all previous probing inputs

e Invariant to everything that leaves f,'s functionality intact .=

* Not fully universal -

E(0)
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compare:
Schmidhuber, 2015, “On Learning to
Think”




Interactive Probing (Functionalist)

* Probing sequences are dynamically generated by core LSTM

» Next probing inputs depend on f,’s response to all previous probing inputs

e Invariant to everything that leaves f,'s functionality intact .=

* Not fully universal -

B i I i Ee Function
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\ &/ |\ E,A 7|\ E,A / compare:

\__ \__ \__ Schmidhuber, 2015, “On Learning to
Think”




Functionalist Approach: Theoretical Results

What’s the difference between interactive and non-interactive probing?

T details in the paper

Results
* (General upper bound for required interactions is the same

* |n certain settings, interactive probing is exponentially more efficient



Cloned Performance

Pre-Training Results

Formal Languages

Original vs. Emulated Validation Loss
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Learned Embedding Spaces

Formal Languages

Interactive Fingerprinting Embeddings (PCA)
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Downstream Results

Predictor MLP on top of learned representations

Formal Languages

Task prediction loss Accuracy prediction loss

0.39 0.38 0.39

. O. 0.035 0.032
I 0. 29 0.30
0.020
0.18 0.015 0.015
Layer-Wise Statistics 001 0.009

mam Flattened Weights 0. 010 0. 009

B Parameter Transformer 0. 007 0. 007 0.007

mmm DWSNet

s Non-Interactive Probing

I |[nteractive Probing
D P R T

Pre-Trained Supervised end-to-end Pre-Trained Supervised end-to-end

more results in the paper



Conclusion
Learning RNN Weight Representations

 [Two BRNN ‘Model Zoo’ datasets

 Emulation-based pre-training method

* Distinction between mechanistic and functionalist weight encoders
* Two novel functionalist encoder types

 Comparison of six different RNN weight encoder architectures

Functionalist encoders are superior at complex tasks
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Code & Datasets

Thank you!




