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   Self-Supervised Learning of RNN Weight Representations

• Recurrent function  with parameters  is run in an 
environment, we get a trajectory  

• Encoder  generates representation  

• Emulator  is conditioned on  and imitates 

fθ θ
Sθ = (x1, y1, x2, y2, …)

E E(θ)

A E(θ) fθ
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   Results

• Two datasets of LSTM weights 
• Each LSTM is trained to achieve a different task

 L1,1,1,1

 L1,2,1,2

 L2,1,3,1

Formal Languages Dataset 
Autoregressive models of languages 

 Lma,mb,mc,… := {an+mabn+mbcn+mc… |n ∈ ℕ}
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Tiled Sequential MNIST Dataset 
Classifiers of the MNIST dataset, rotated 
by different angles 
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    Functionalist Approaches
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Probing Sequences

Setting: 
• Interrogator  has to Identify a specific function  

from a known set  of total computable functions 
• It has to use as few interactions as possible

ID fC
D

Results: 
• The general upper bound of required interactions is the same for interactive and non-

interactive Interrogators 
• For certain function sets, an interactive Interrogator needs exponentially fewer 

interactions
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Non-Interactive Probing Encoder 
• Fixed but learnable probing sequences 

are given as input to the input RNN  
• Based on the corresponding output 

sequences, the core LSTM  computes 
the representation 

fθ

ER
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Interactive Probing Encoder 
• Probing sequences are dynamically 

generated by the core LSTM  
• The next probing input depends on 

all the previous probing inputs and 
corresponding outputs

ER

• The learned representations can be used for various  downstream 
tasks, such as task, performance or generalisation gap prediction 

• Functionalist approaches are superior at more complex problems 
• Only Interactive Probing learns generally useful representations 

for the Formal Languages dataset 

Learning Useful Representations of Recurrent Neural Network Weight Matrices

Table 1: Properties of the different RNN weight encoder architectures. N is the
number of hidden neurons in f✓.

Encoder Permutation
Invariant

Universal
Approx. #Params Type

Layerwise Statistics Yes No const. Mechanistic
Flattened Weights No Yes O(N2) Mechanistic
Parameter Transformer No Yes O(N) Mechanistic
DWSNet Yes Yes const. Mechanistic
Non-Interactive Probing Yes No const. Functionalist
Interactive Probing Yes No const. Functionalist
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Figure 3: Interrogator ID has access to
a set D of functions and interacts with
function fC , which it has to identify.

An Interrogator is called interactive if the value xj of the jth
probing input depends on fC(x1), . . . , fC(xj�1), i.e., the
outputs corresponding to the previous probing inputs. This
implies that the probing inputs generally depend on the spe-
cific function fC given to I . Conversely, a non-interactive
Interrogator can only provide a fixed set of probing inputs
to fC , and their values do not depend on the outputs of fC .
In the proof of Proposition 3.1, the probing inputs given to
fC do not dynamically depend on fC . This means that the
theorem holds for non-interactive Interrogators. A natural
question arises: Can interactive Interrogators identify a func-
tion using fewer interactions? Although there are instances
where they need exponentially fewer interactions, in the
worst-case scenario, both methods necessitate an equivalent
number of interactions:

Proposition 3.2. The upper bound for probing interactions
required to identify a function from a given function set D is
|D| � 1 for both interactive and non-interactive Interroga-
tors.

Proposition 3.3. There exist function sets for which an inter-
active Interrogator requires exponentially fewer probing in-
teractions to identify a member than does a non-interactive
one.

Section 6 demonstrates that these theoretical concepts are
mirrored in empirical results. In one dataset (formal lan-
guages), interactive probing significantly outperforms non-
interactive probing. However, in another dataset, both meth-
ods show similar performance.

4. Self-Supervised Learning of RNN Weight
Representations

We propose a general-purpose method for learning repre-
sentations of RNN weights. It is based on the idea that the
RNN weight representation should contain all the informa-
tion necessary in order to emulate the RNN’s functionality.
A very similar technique is used by Raileanu et al. (2020)
to learn representations of (non-recurrent) policies based on
their trajectories.

The RNN f✓ interacts with a potentially stochastic environ-
ment, E , that maps an RNN’s output y to a new input x. The
environment may have its own hidden state ⌘. By sequen-
tially interacting with the environment, the RNN produces a
rollout defined by:

(
xt, ⌘t = E(yt�1, ⌘t�1)

yt, ht = f✓(xt, ht�1),

with fixed initial states y0, ⌘0 and h0. For instance, f✓ might
be an autoregressive generative model, with E acting as a
stochastic environment that receives a probability distribu-
tion over some language tokens, yt—the output of f at time
step t—, and produces a representation (e.g., a one-hot vec-
tor) of the new input token xt+1. When the environment
is stochastic, numerous rollouts can be generated for any
✓ 2 ⇥. A rollout sequence of a function f✓ in environment
E has the form S✓ = (x1, y1, x2, y2, . . . ).

To train an RNN weight encoder E�, we consider an Emula-
tor A⇠ : RX⇥RB⇥RZ ! RY ⇥RB ; (x, bt�1, z) 7! (ỹ, bt),
parametrized by ⇠ 2 ⌅. The Emulator is an RNN with hid-
den state b that learns to imitate different RNNs f✓ based on
their function encoding z = E(✓).

We consider a dataset D = {(✓i, S✓i)|i = 1, 2, . . . } com-
posed of tuples, each containing the parameters of a different
RNN and a corresponding rollout sequence. We assume that
all RNNs have the same initial state h0 but have been trained
on different tasks. The Encoder E� and the Emulator A⇠

are jointly trained by minimizing a loss function L. This
loss function measures the behavioral similarity between an
RNN f✓ and the Emulator A⇠, which is conditioned on the
function representation z = E�(✓) of ✓ as produced by the
Encoder E� (see Figure 4). Put simply, the Emulator uses
the representations of a set of diverse RNNs f✓ to imitate
their behavior:6

min
�,⇠

E(✓,S)⇠D
X

(xi,yi)2S

L
�
A⇠(xi, E�(✓)), yi

�
. (1)

In the case of continuous outputs y, the mean-squared error
6The recurrence of A⇠ is omitted for simplicity.
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   Downstream Results

t-SNE  & other encoder types
Formal Languages Sequential MNIST

PCA of learned embedding spaces 
Every dot represents a network  
from the validation datasets
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    Original vs. Emulated Performance

’s original performance vs. 
the performance of ’s 
emulation based on .  
Validation set.
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    Encoder Properties
    Theory for the Functionalist Approach
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Interactive Probing loss
vs. number of probing sequences vs. probing sequence length

Code & Datasets

Recurrent Neural Networks are universal computers. Their weights 
can represent any program. Can we learn useful representations of 
the weights of RNNs?


