
 Learned Embedding Spaces Datasets

Learning Useful Representations of
Recurrent Neural Network Weight Matrices

Vincent Herrmann, Francesco Faccio, Jürgen Schmidhuber

Università
della
Svizzera
italiana

Istituto
Dalle Molle
di studi
sull’Intelligenza
artificiale

fθ1fθ1
fθ1

fθ1fθ1fθ

ER

EI

EO

E(θ)

̂x

̂y

θ

Non-Interactive Probing Encoder

Function
Embedding

fθ1
RNN

Weights

fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

 S1 S2 S3

fθ1fθ1
fθ1

fθ1fθ1fθ

ER

EI

EO

E(θ)

̂x

̂y

fθ1fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

Interactive Probing Encoder

Function
Embedding

θ
RNN

Weights

 Types of Encoders for RNN Weights θ

Transformer

θ E(θ)
Parameter Transformer

θ E(θ)

DWSNet

MLP

θ E(θ)

Flattened Weights & MLP

MLP

θ E(θ)

Layer-Wise Statistics & MLP

fθ

LSTM

fθ

θ E(θ)
Non-Interactive Probing

LSTM

fθ

θ E(θ)

Interactive Probing

Equ
ivar

iant
 Modu

le

Poo
ling

 Modu
le

Mechanistic:
Look directly at weights

Functionalist:
Look at input-output mapping

ID

fC

f1f1f1f1
i

⏟D

x fC(x)

f1

f2 f3 f4

f7

f5 f6

x1

x2 x3

x4 x5

x6

fθ1fθ1fθ

ER

EI

EO

E(θ) A

̂x

̂y

x

ỹ

θ

Function Encoder Function Emulator

Function
Embedding

RNN
Weights

E E(θ) A

x

ỹ

θ

Function
Embedding

RNN
Weights

Function Emulator
Function
Encoder

fθ

x

y
Original

RNN
Function

Loss
(Reverse KL
Divergence)

<latexit sha1_base64="b/SSVrorbLysSw0m57r6hdLFHCQ=">AAAC1HichVFLS8NAEJ7GV1tfVY9egkXwVBIp6rHgAw8KFewD2iKbdNuG5kWyLdTak3j15lV/l/4WD367poIW6YbNzH7zzbczO1boOrEwjPeUtrC4tLySzmRX19Y3NnNb29U4GEQ2r9iBG0R1i8XcdXxeEY5weT2MOPMsl9es/qmM14Y8ip3AvxWjkLc81vWdjmMzAajR9Jjo2cwdX03ucnmjYKilzzpm4uQpWeUg90FNalNANg3II04+CfguMYrxNcgkg0JgLRoDi+A5Ks5pQlnkDsDiYDCgffy7ODUS1MdZasYq28YtLnaETJ32sS+UogW2vJXDj2E/se8V1v33hrFSlhWOYC0oZpTiNXBBPTDmZXoJc1rL/EzZlaAOnahuHNQXKkT2af/onCESAeuriE7nitmFhqXOQ7yAD1tBBfKVpwq66rgNy5TlSsVPFBn0Ilj5+qgHYzb/DnXWqR4WzKNC8aaYL5WSgadpl/boAFM9phJdUhl1yLm80Cu9aVXtQXvUnr6pWirJ2aFfS3v+Ajzok3Y=</latexit>

L

 Self-Supervised Learning of RNN Weight Representations

• Recurrent function with parameters is run in an
environment, we get a trajectory

• Encoder generates representation

• Emulator is conditioned on and imitates

fθ θ
Sθ = (x1, y1, x2, y2, …)

E E(θ)

A E(θ) fθ

Paper

 Results

• Two datasets of LSTM weights
• Each LSTM is trained to achieve a different task

 L1,1,1,1

 L1,2,1,2

 L2,1,3,1

Formal Languages Dataset
Autoregressive models of languages

 Lma,mb,mc,… := {an+mabn+mbcn+mc… |n ∈ ℕ}

 …

a b c

…

d

a a b b c c d d

a a a b b b c c c d d d

a b c

…

d

a a b b c c d d

a a a b b b c c c d d d

b d

b d

b d

a b c

…

d

a a b b c c d d

a a a b b b c c c d d

a c c

a c c

a c c d

Tiled Sequential MNIST Dataset
Classifiers of the MNIST dataset, rotated
by different angles

° 17

° 74

° 231

 …

…

…

…

fθ1fθ1
fθ1

fθ1fθ1fθ

ER

EI

EO

E(θ)

̂x

̂y

θ

Non-Interactive Probing Encoder

Function
Embedding

fθ1
RNN

Weights

fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

 S1 S2 S3

fθ1fθ1
fθ1

fθ1fθ1fθ

ER

EI

EO

E(θ)

̂x

̂y

fθ1fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

Interactive Probing Encoder

Function
Embedding

θ
RNN

Weights

 Functionalist Approaches

3
0
2
4

4
1
3
5

5
2
4
6

sequence
length: 7

sequence
length: 12

sequence
length: 22

sequence
length: 42

#occurrences:

Task: L−3,−1,1

a
b
c
d

BOS
EOS

a
b
c
d

BOS
EOS

a
b
c
d

BOS
EOS

a
b
c
d

BOS
EOS

#occurrences:

#occurrences:

to
ke

ns
to

ke
ns

to
ke

ns
to

ke
ns

Probing Sequences

Setting:
• Interrogator has to Identify a specific function

from a known set of total computable functions
• It has to use as few interactions as possible

ID fC
D

Results:
• The general upper bound of required interactions is the same for interactive and non-

interactive Interrogators
• For certain function sets, an interactive Interrogator needs exponentially fewer

interactions

ID

fC

f1f1f1f1
i

⏟D

x fC(x)

Non-Interactive Probing Encoder
• Fixed but learnable probing sequences

are given as input to the input RNN
• Based on the corresponding output

sequences, the core LSTM computes
the representation

fθ

ER
E(θ)

Interactive Probing Encoder
• Probing sequences are dynamically

generated by the core LSTM
• The next probing input depends on

all the previous probing inputs and
corresponding outputs

ER

• The learned representations can be used for various downstream
tasks, such as task, performance or generalisation gap prediction

• Functionalist approaches are superior at more complex problems
• Only Interactive Probing learns generally useful representations

for the Formal Languages dataset

Learning Useful Representations of Recurrent Neural Network Weight Matrices

Table 1: Properties of the different RNN weight encoder architectures. N is the
number of hidden neurons in f✓.

Encoder Permutation
Invariant

Universal
Approx. #Params Type

Layerwise Statistics Yes No const. Mechanistic
Flattened Weights No Yes O(N2) Mechanistic
Parameter Transformer No Yes O(N) Mechanistic
DWSNet Yes Yes const. Mechanistic
Non-Interactive Probing Yes No const. Functionalist
Interactive Probing Yes No const. Functionalist

ID

fC

f1f1f1f1 i

⏟D

x fC(x)

Figure 3: Interrogator ID has access to
a set D of functions and interacts with
function fC , which it has to identify.

An Interrogator is called interactive if the value xj of the jth
probing input depends on fC(x1), . . . , fC(xj�1), i.e., the
outputs corresponding to the previous probing inputs. This
implies that the probing inputs generally depend on the spe-
cific function fC given to I . Conversely, a non-interactive
Interrogator can only provide a fixed set of probing inputs
to fC , and their values do not depend on the outputs of fC .
In the proof of Proposition 3.1, the probing inputs given to
fC do not dynamically depend on fC . This means that the
theorem holds for non-interactive Interrogators. A natural
question arises: Can interactive Interrogators identify a func-
tion using fewer interactions? Although there are instances
where they need exponentially fewer interactions, in the
worst-case scenario, both methods necessitate an equivalent
number of interactions:

Proposition 3.2. The upper bound for probing interactions
required to identify a function from a given function set D is
|D| � 1 for both interactive and non-interactive Interroga-
tors.

Proposition 3.3. There exist function sets for which an inter-
active Interrogator requires exponentially fewer probing in-
teractions to identify a member than does a non-interactive
one.

Section 6 demonstrates that these theoretical concepts are
mirrored in empirical results. In one dataset (formal lan-
guages), interactive probing significantly outperforms non-
interactive probing. However, in another dataset, both meth-
ods show similar performance.

4. Self-Supervised Learning of RNN Weight
Representations

We propose a general-purpose method for learning repre-
sentations of RNN weights. It is based on the idea that the
RNN weight representation should contain all the informa-
tion necessary in order to emulate the RNN’s functionality.
A very similar technique is used by Raileanu et al. (2020)
to learn representations of (non-recurrent) policies based on
their trajectories.

The RNN f✓ interacts with a potentially stochastic environ-
ment, E , that maps an RNN’s output y to a new input x. The
environment may have its own hidden state ⌘. By sequen-
tially interacting with the environment, the RNN produces a
rollout defined by:

(
xt, ⌘t = E(yt�1, ⌘t�1)

yt, ht = f✓(xt, ht�1),

with fixed initial states y0, ⌘0 and h0. For instance, f✓ might
be an autoregressive generative model, with E acting as a
stochastic environment that receives a probability distribu-
tion over some language tokens, yt—the output of f at time
step t—, and produces a representation (e.g., a one-hot vec-
tor) of the new input token xt+1. When the environment
is stochastic, numerous rollouts can be generated for any
✓ 2 ⇥. A rollout sequence of a function f✓ in environment
E has the form S✓ = (x1, y1, x2, y2, . . .).

To train an RNN weight encoder E�, we consider an Emula-
tor A⇠ : RX⇥RB⇥RZ ! RY ⇥RB ; (x, bt�1, z) 7! (ỹ, bt),
parametrized by ⇠ 2 ⌅. The Emulator is an RNN with hid-
den state b that learns to imitate different RNNs f✓ based on
their function encoding z = E(✓).

We consider a dataset D = {(✓i, S✓i)|i = 1, 2, . . . } com-
posed of tuples, each containing the parameters of a different
RNN and a corresponding rollout sequence. We assume that
all RNNs have the same initial state h0 but have been trained
on different tasks. The Encoder E� and the Emulator A⇠

are jointly trained by minimizing a loss function L. This
loss function measures the behavioral similarity between an
RNN f✓ and the Emulator A⇠, which is conditioned on the
function representation z = E�(✓) of ✓ as produced by the
Encoder E� (see Figure 4). Put simply, the Emulator uses
the representations of a set of diverse RNNs f✓ to imitate
their behavior:6

min
�,⇠

E(✓,S)⇠D
X

(xi,yi)2S

L
�
A⇠(xi, E�(✓)), yi

�
. (1)

In the case of continuous outputs y, the mean-squared error
6The recurrence of A⇠ is omitted for simplicity.

5

Interactive
Probing

Formal Languages Sequential MNIST

L−2,2,−2 L−2,2,−2

Ta
sk

L−2,2,−2 L−2,2,−2

Ta
sk

t-SNE Embeddings

Interactive Probing Embeddings

t-SNE Embeddings

Interactive Probing Embeddings

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

t-SNE Embeddings

Interactive Probing Embeddings

t-
SN

E

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Ta
sk

Validation Set OOD Test Set Validation Set OOD Test Set

La
ye

rw
ise

 S
ta

tis
tic

s
&

M
LP

Fl
at

te
ne

d
W

ei
gh

ts
 &

 M
LP

Pa
ra

m
et

er
 Tr

an
sf

or
m

er
DW

SN
et

No
n-

In
te

ra
ct

iv
e

Pr
ob

in
g

In
te

ra
ct

iv
e

Pr
ob

in
g

L−2,2,−2 L−2,2,−2

Ta
sk

L−2,2,−2 L−2,2,−2

Ta
sk

t-SNE Embeddings

Interactive Probing Embeddings

t-
SN

E

 Downstream Results

t-SNE & other encoder types
Formal Languages Sequential MNIST

PCA of learned embedding spaces
Every dot represents a network
from the validation datasets

fθ

Fo
rm

al
 L

an
gu

ag
es

Se
qu

en
ti

al
 M

N
IS

T

Supervised Pre-Trained
Validation OOD Test Validation OOD Test

 Original vs. Emulated Performance

’s original performance vs.
the performance of ’s
emulation based on .
Validation set.

fθ
Aξ

Eϕ(θ)

Fo
rm

al
 L

an
gu

ag
es

Se
qu

en
ti

al
 M

N
IS

T

 Encoder Properties
 Theory for the Functionalist Approach

Fo
rm

al
 L

an
gu

ag
es

Pr

ob
in

g
Se

qu
en

ce
s

In
va

ri
an

ce
 to

Pe

rm
ut

at
io

n

Interactive Probing loss
vs. number of probing sequences vs. probing sequence length

Code & Datasets

Recurrent Neural Networks are universal computers. Their weights
can represent any program. Can we learn useful representations of
the weights of RNNs?

