Istituto

Dalle Molle
di studi

el Goal-Conditioned Generators of Deep Policies
IDSTA

Francesco Faccio (francesco@Qidsia.ch)
Vincent Herrmann, Aditya Ramesh, Louis Kirsch, and Jirgen Schmidhuber

AAAI-23




Overview of the talk

Learn a single model to evaluate many policies:

» Faccio, Kirsch, & Schmidhuber (2020). Parameter-based value functions.
ICLR 2021

» Harb, Schaul, Precup, & Bacon, (2020). Policy evaluation networks.

» Faccio, Ramesh, Herrmann, Harb, & Schmidhuber (2022). General Policy
Evaluation and Improvement by Learning to Identify Few But Crucial
States.

Learn a single model to generate many policies:

» Faccio®, Herrmann®, Ramesh, Kirsch, & Schmidhuber (2022). Goal-Conditioned
Generators of Deep Policies.

Goal-Conditioned Generators of Deep Policies



I The RL Framework 3

» Markov Decision Process
(Puterman, 2014; Stratonovich,
1960) Agent Environment

action a4,

® S set of states: s € S e
® A set of actions: a € A

P(s'|s,a) markovian transition
matrix -

observation s¢
reward ¢

R(s,a) reward function
® ~ discount factor

1o distribution on initial state

Policy mp : S — A(A) inducing a stationary distribution over states d"(s) in the MDP

Goal-Conditioned Generators of Deep Policies



Value Functions

Traditional Value Functions
(Sutton and Barto, 1998)

T—t—1
= Value functions estimate the return R; = Z 'ykR(st+k+1,at+k+1) of a policy:
k=0

® State-value function
V7 (s) :=En, [Rt|st = $]
® Action-value function
Q" (s,a) :=Er,[Re|st = s,a: = a
m State and action value functions are related by:
/ mo(als)Q™® (s,a) da if mg is stochastic,
VTe(s)=(’A

Q™ (s, me(s)) if g is deterministic.

Goal-Conditioned Generators of Deep Policies



PBVFs

Parameter-based Value Functions
(Faccio et al., 2021)

m Parameter-based State-Value Function (PSVF)
V(s,0) :=E[R|s; = s, 0]

m Parameter-based Action-Value Function (PAVF)
Q(s,a,0) :=E[R¢|st = s,a; = a, 0]

m Parameter-based Start-State-Value Function (PSSVF)
V(0) := Egpo9)[V (s, 0)]

Goal-Conditioned Generators of Deep Policies



Parameter-based Start-State Value Function

m Stochastic or deterministic policies
m Find the policy mg maximizing J(6):

m Taking the gradient of J(0) we obtain:

Vo (0) = VoV (0)

Goal-Conditioned Generators of Deep Policies



Parameter-based State-Value Function

m Stochastic or deterministic policies

m Find the policy mg maximizing J(6):

0) = /8 4 (5)V (s, 0) ds

a,

:71'9
: =

T S V E[Rt|5t = 870]
S

» Taking the gradient of J(€) we obtain:

VOJ(O) s~d”b(s) [VGV(S 0)]

Goal-Conditioned Generators of Deep Policies



Parameter-based Action-Value Function

m Stochastic policies

» Find the policy 7y maximizing J(0):

J(0) /d’”’ / (s,a,0)dads

a,
| T
: |
—Z» Q E[R|sy = s,a; = a, 0]
s

m Taking the gradient of J(€) we obtain:

7o(als)
my(als)

VHJ(Q) = Esuam (s),a~my(.|s) [ (Q(Sy a, G)Ve lOg e (a|8) + VQQ(S7 a, 0))

Goal-Conditioned Generators of Deep Policies



Parameter-based Action-Value Function

m Deterministic policies

» Find the policy 7y maximizing J(0):

J(0) = /S 4™ (5)Q(s, 70(5), 0) ds

a
To
( ] (7]
Z Q i—vE[Rt|st =s,a; = a,0]
s

» Taking the gradient of J(€) we obtain:

V(-)J(B) =E g (s) [VGQ(S, a, 9)|a:T9(S)V9779 (S) + VQQ(S, a, 0)|l1:ﬂ'9(5)]

Goal-Conditioned Generators of Deep Policies



10

I Actor-Critic algorithm

Off-policy actor-critic with PBVFs
Given the behavioral 7, find g maximizing J(6):

— 1. Collect data with 7, (expensive in RL)
2. Use data to train V' (0), V (s, 0) or Q(s, a,?)
3. Find 7g following Vg .J(mg) (offline optimization)

4. Set new behavioral w9 < m

— 5. Repeat until convergence

Goal-Conditioned Generators of Deep Policies



I Demonstration "

m PSSVF on LQR using shallow policies

Goal-Conditioned Generators of Deep Policies



I Experiments

12

» Comparison with DDPG (Lillicrap et al.,

2015) and ARS (Mania et al., 2018)

Hopper-v3 Reacher-v2 InvertedPendulum-v2
3000 o
= — ars
2500 -10 —— psvf
—— pssvf
2000 -20 — ddpg
€ € € — pavf
10 RS H
1000 [ 0
|
-50
» Sadadis i oeana. . 1
. 50 0.80M 1o Bbom 0.02M 0.04M 0.06M 0.08M oiom oo 0.04M 0.06M 0.08M 0.10M
time steps. time steps. time steps.
Swimmer-v3 CartPole-vl MountainCarContinuous-v0
350
300
250
200
€
g 150

R e
“Bom 04M  06OM  08M  100M 00M  0oaM  006M
ime steps time steps

M o Adlis

0.08M 0.10M 0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps.



Limitations "

Problem:
m The method does not scale well with the number of policy parameters

We must reduce the dimensionality of the policy.

Some desirable properties for policy embedding:
m Differentiability in policy parameters

m Invariances to policy size

Goal-Conditioned Generators of Deep Policies



I Policy Fingerprinting (Harb et al., 2020)

To evaluate a policy mp: T .
m Learn a set of 'probing states’ {.§k}kK:1 AL ‘\,
4 LuseB Ly

to feed to the policy

= Learn an MLP Uy mapping the

! 1 I T S K \ concat.
probing a.ctlons {ak'— 70(5k) Hoet \ T V.. (0)
produced in the probing states to the brobing Probing

States Actions

return r

Setting w = {®, 81, ...5x }:

inLy = i E Vw0_2: i E U ~7"'7 S —r)?
min Ly H};n(ﬂg’r)eB[( (0)—7)7] d)’gﬁ}{ng(ﬂe’r)eB[( o([mo(51) mo(5K)])—7)7]

Goal-Conditioned Generators of Deep Policies



Demonstration: Online MNIST

15

We start with randomly initialized CNN 7y
and PSSVF V,,(0) and iteratively:

m Compute the loss [ of my and store
(g, 1) in the buffer

m Use the data to train V,,(0)
» Use V,,(0) to improve the CNN

—— 50 probing states
—— 10 probing states

train loss

0 50000 100000 150000 200000 0 50000 100000 150000 200000
iterations. iterations.

m Learned probing states are digits

Goal-Conditioned Generators of Deep Policies




I Demonstration: Offline MNIST 1

= Given an offline dataset {my,,1;}2Y; of randomly initialized CNNs and their losses
(maximum accuracy 12%) on a batch of images, we train V,, to evaluate such
CNNs

= ~ E[Ro|0]
m We randomly initialize a new CNN and take many steps of gradient ascent
through the learned value function, finding 0" = argmax V,,(0)
0

Goal-Conditioned Generators of Deep Policies



Main Results

17

Ant-v3
2000
1500
c
S 1000
®
500
0
0.00M 0.50M 1.00M 1.50M 2.00M 250M 3.00M
time steps
Walker2d-v3
3000
7 e
£ 2000 =
5
&
1000
0
0.00M 0.50M 1.00M 150M 2.00M 2.50M 3.00M

time steps

Goal-Conditioned Generators of Deep Pol

return

return

HalfCheetah-v3
12500

10000
7500
5000

2500

0
0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

time steps
Hopper-v3
3000
2000 F
1000

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M
time steps

return

Swimmer-v3
200 — pssvf
——— ars
£ 200 —— ddpg
5
®
100
0
0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M
time steps
InvertedDoublePendulum-v2
10000
o e
8000
6000
4000 ;
A
2000

O%OM 0.05M 0.10M 0.15M 0.20M 0.25M 0.30M
time steps




I Zero-shot learning of new policy architectures 18

m A PSSVF trained using deep deterministic policies zero-shot learns a linear policy
with similar performance in Swimmer

400 . . .
o best deep policy in train-
300 ing
e linear policy zero-shot
£ 200 learned
2
100
0
0 200 400 600 800 1000

gradient steps

Goal-Conditioned Generators of Deep Policies



Learning optimal policies from few crucial states 19

m Policy fingerprinting learns a set of crucial states that are informative for policy
evaluation

m A randomly initialized policy can learn near-optimal behaviors in Swimmer
(Hopper) by knowing how to act only in 3 (5) such crucial learned states

Goal-Conditioned Generators of Deep Policies



20

I Probing States visualization in RL

m More examples of learned probing states:

Goal-Conditioned Generators of Deep Policies



Limitations and Future Work 2

Limitations
m Different policies may need different probing states for efficient evaluation

m If there are many probing states, then the concatenated vector of probing actions
can be very large

m In some environments a lot of probing states are needed to evaluate a policy
Future work

m Extension to V(s,0), Q(s,a,0)

m Recursive generation of probing states

Goal-Conditioned Generators of Deep Policies



I (Online) Return-Conditioned Reinforcement Learning 2

A command of the form ’act in the environment and achieve a desired return’ is given
as input to the policy.

General framework (Schmidhuber, 2019; Srivastava et al., 2019):
m Act in the environment with a given return command
m Use the data to learn a map from return commands and states into actions

m Ask for higher return commands at next environment interaction

m Most methods are based on the idea of hindsight learning: the agent’s behavior is
optimal if it had had the achiever return as input command

Here we propose instead to learn a generator G, : R — © such that if § = G,(c),
then E[Ry|0] = c.

Goal-Conditioned Generators of Deep Policies



I —
I Fast Weights / Hypernetworks (Schmidhuber, 1992; Ha et al., 2016) 2

m Each weight matrix of the policy is split H
into slices
m For each slices we learn an embedding 2 re- [
shape []

m A shared MLP H receives as input a z
and outputs a slice

m further context information can be given
to H in form of an additional
conditioning input ¢

m The policy weights are finally combined
concatenating the generated slices

= The parameters of the generator G, are
the parameters of H and all the
embeddings z

Goal-Conditioned Generators of Deep Policies



I Goal-Conditioned Generators of Deep Policies 2

— 1. Given command ¢, generate 6 = G ,(c)
Ly

2. Simulate 7g and obtain return r

3. Use data to train V() .
-

4. Minimize L (p) = gD[(VW(Gp(c)) —¢)?] prbing
to learn the parameters p of the generator

ﬂ] concat. Vw (0)

Probing
Actions

5. Choose new command ¢

—— 6. Repeat until convergence

-

Goal-Conditioned Generators of Deep Policies



Experiments

25

Swimmer-v3

300

200

return

100

0

_18.000M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M
time steps

InvertedPendulum-v2

1000
800

600

return

400

200

0
0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps

return

Hopper-v3
SR —— gogepo
3000 —ars
—— ddpg
2000 — eac
— td3
1000 — udrl

0900M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

time steps
MountainCarContinuous-v0
100 =
75
c 50
2
e 25

—

0.00M 0.02M 0.04M 0.06M 0.08M 0.10M
time steps




26

I Testing the Generator

Swimmer-v3 Hopper-v3
== Return Command == Return Command
300 2000 -
£ IS
2 2
9 200 2 1500
o =l
¢ 1004 2 1000 4
[} [}
= <
< oA & 5004
~100 0-
T T T T T T T T T T
-100 0 100 200 300 0 500 1000 1500 2000
Return Command Return Command
InvertedPendulum-v2 MountainCarContinuous-v0
] 100 4
10004 Return Command 0 <
£ 800 e 1
2 2 50
< 600 - -4
° T 254
$ $
o 4007 2 0
< =
S S
< 2004 < -25-
0- —50 == Return Command
T T T T T T T T T T T T T
200 400 600 800 1000 -40 -20 0 20 40 60 80 100
Return Command Return Command

onditioned Generators of Deep Pol



Testing the Generator

27

Swimmer-v3 @ 100000 Iterations Hopper-v3
@® 500000 Iterations
300 @ 1000000 lterations
@ 2000000 Iterations 2000
@® 3000000 Iterations
200
1500
100 & &
1000
0
500
-100
0
InvertedPendulum-v2 @ 5000 Iterations MountainCarContinuous-v0
1000 @ 10000 Iterations
@ 20000 iterations
50000 Iterations 80
@ 100000 lterations
800 0
40
600
£ 20 £
2 H
& &
400 0
-20
200 a0
-60

Goal-Conditioned Generators of Deep Policies




Limitations and Future Work 2

Limitations

m Policies created by an untrained generator might have weights that are far from
typical initialization schemes

m The method is based on the episodic return signal

m Different policies may need different probing states for efficient evaluation

m In some environments a lot of probing states are needed to evaluate a policy
Future work

m Extension to state-based evaluation and generation of policies

m Context commands different than desired return

m Richer policy generation through VAEs

Goal-Conditioned Generators of Deep Policies



Thank You for Your Attention!



I References *

Faccio, F., Kirsch, L., and Schmidhuber, J. (2021). Parameter-based value functions. arXiv preprint
arXiv:2006.09226.

Ha, D., Dai, A., and Le, Q. V. (2016). HyperNetworks. In International Conference on Learning Representations.

Harb, J., Schaul, T., Precup, D., and Bacon, P.-L. (2020). Policy evaluation networks. arXiv preprint
arXiv:2002.11833.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Mania, H., Guy, A., and Recht, B. (2018). Simple random search of static linear policies is competitive for
reinforcement learning. In Advances in Neural Information Processing Systems, pages 1800-1809.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons.

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139.

Schmidhuber, J. (2019). Reinforcement Learning Upside Down: Don’t Predict Rewards—Just Map Them to
Actions. arXiv:1912.02875.

Srivastava, R. K., Shyam, P., Mutz, F., Jaskowski, W., and Schmidhuber, J. (2019). Training Agents Using
Upside-down Reinforcement Learning. In NeurlPS Deep RL Workshop.

Stratonovich, R. (1960). Conditional Markov processes. Theory of Probability And Its Applications,
5(2):156-178.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. MIT press
Cambridge.

Goal-Conditioned Generators of Deep Policies



	References

