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Overview of the talk

Learn a single model to evaluate many policies:

» Faccio, Kirsch, & Schmidhuber (2020). Parameter-based value functions.
ICLR 2021

» Harb, Schaul, Precup, & Bacon, (2020). Policy evaluation networks.

» Faccio, Ramesh, Herrmann, Harb, & Schmidhuber (2022). General Policy
Evaluation and Improvement by Learning to Identify Few But Crucial
States.

Learn a single model to generate many policies:

» Faccio®, Herrmann®, Ramesh, Kirsch, & Schmidhuber (2022). Goal-Conditioned
Generators of Deep Policies.
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I The RL Framework 3

» Markov Decision Process
(Puterman, 2014; Stratonovich,
1960) Agent Environment

action a4,

® S set of states: s € S e
® A set of actions: a € A

P(s'|s,a) markovian transition
matrix -

observation s¢
reward ¢

R(s,a) reward function
® ~ discount factor

1o distribution on initial state

Policy mp : S — A(A) inducing a stationary distribution over states d"(s) in the MDP

Goal-Conditioned Generators of Deep Policies



Value Functions

Traditional Value Functions
(Sutton and Barto, 1998)

T—t—1
= Value functions estimate the return R; = Z 'ykR(st+k+1,at+k+1) of a policy:
k=0

® State-value function
V7 (s) :=En, [Rt|st = $]
® Action-value function
Q" (s,a) :=Er,[Re|st = s,a: = a
m State and action value functions are related by:
/ mo(als)Q™® (s,a) da if mg is stochastic,
VTe(s)=(’A

Q™ (s, me(s)) if g is deterministic.

Goal-Conditioned Generators of Deep Policies



PBVFs

Parameter-based Value Functions
(Faccio et al., 2021)

m Parameter-based State-Value Function (PSVF)
V(s,0) :=E[R|s; = s, 0]

m Parameter-based Action-Value Function (PAVF)
Q(s,a,0) :=E[R¢|st = s,a; = a, 0]

m Parameter-based Start-State-Value Function (PSSVF)
V(0) := Egpo9)[V (s, 0)]
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Parameter-based Start-State Value Function

m Stochastic or deterministic policies
m Find the policy mg maximizing J(6):

m Taking the gradient of J(0) we obtain:

Vo (0) = VoV (0)
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Parameter-based State-Value Function

m Stochastic or deterministic policies

m Find the policy mg maximizing J(6):

0) = /8 4 (5)V (s, 0) ds

a,

:71'9
: =

T S V E[Rt|5t = 870]
S

» Taking the gradient of J(€) we obtain:

VOJ(O) s~d”b(s) [VGV(S 0)]
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Parameter-based Action-Value Function

m Stochastic policies

» Find the policy 7y maximizing J(0):

J(0) /d’”’ / (s,a,0)dads

a,
| T
: |
—Z» Q E[R|sy = s,a; = a, 0]
s

m Taking the gradient of J(€) we obtain:

7o(als)
my(als)

VHJ(Q) = Esuam (s),a~my(.|s) [ (Q(Sy a, G)Ve lOg e (a|8) + VQQ(S7 a, 0))
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Parameter-based Action-Value Function

m Deterministic policies

» Find the policy 7y maximizing J(0):

J(0) = /S 4™ (5)Q(s, 70(5), 0) ds

a
To
( ] (7]
Z Q i—vE[Rt|st =s,a; = a,0]
s

» Taking the gradient of J(€) we obtain:

V(-)J(B) =E g (s) [VGQ(S, a, 9)|a:T9(S)V9779 (S) + VQQ(S, a, 0)|l1:ﬂ'9(5)]
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10

I Actor-Critic algorithm

Off-policy actor-critic with PBVFs
Given the behavioral 7, find g maximizing J(6):

— 1. Collect data with 7, (expensive in RL)
2. Use data to train V' (0), V (s, 0) or Q(s, a,?)
3. Find 7g following Vg .J(mg) (offline optimization)

4. Set new behavioral w9 < m

— 5. Repeat until convergence
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I Demonstration "

m PSSVF on LQR using shallow policies

Goal-Conditioned Generators of Deep Policies



I Experiments

12

» Comparison with DDPG (Lillicrap et al.,

2015) and ARS (Mania et al., 2018)
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Limitations "

Problem:
m The method does not scale well with the number of policy parameters

We must reduce the dimensionality of the policy.

Some desirable properties for policy embedding:
m Differentiability in policy parameters

m Invariances to policy size
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I Policy Fingerprinting (Harb et al., 2020)

To evaluate a policy mp: T .
m Learn a set of 'probing states’ {.§k}kK:1 AL ‘\,
4 LuseB Ly

to feed to the policy

= Learn an MLP Uy mapping the

! 1 I T S K \ concat.
probing a.ctlons {ak'— 70(5k) Hoet \ T V.. (0)
produced in the probing states to the brobing Probing

States Actions

return r

Setting w = {®, 81, ...5x }:

inLy = i E Vw0_2: i E U ~7"'7 S —r)?
min Ly H};n(ﬂg’r)eB[( (0)—7)7] d)’gﬁ}{ng(ﬂe’r)eB[( o([mo(51) mo(5K)])—7)7]
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Demonstration: Online MNIST

15

We start with randomly initialized CNN 7y
and PSSVF V,,(0) and iteratively:

m Compute the loss [ of my and store
(g, 1) in the buffer

m Use the data to train V,,(0)
» Use V,,(0) to improve the CNN

—— 50 probing states
—— 10 probing states

train loss

0 50000 100000 150000 200000 0 50000 100000 150000 200000
iterations. iterations.

m Learned probing states are digits
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I Demonstration: Offline MNIST 1

= Given an offline dataset {my,,1;}2Y; of randomly initialized CNNs and their losses
(maximum accuracy 12%) on a batch of images, we train V,, to evaluate such
CNNs

= ~ E[Ro|0]
m We randomly initialize a new CNN and take many steps of gradient ascent
through the learned value function, finding 0" = argmax V,,(0)
0
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Main Results

17
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I Zero-shot learning of new policy architectures 18

m A PSSVF trained using deep deterministic policies zero-shot learns a linear policy
with similar performance in Swimmer

400 . . .
o best deep policy in train-
300 ing
e linear policy zero-shot
£ 200 learned
2
100
0
0 200 400 600 800 1000

gradient steps
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Learning optimal policies from few crucial states 19

m Policy fingerprinting learns a set of crucial states that are informative for policy
evaluation

m A randomly initialized policy can learn near-optimal behaviors in Swimmer
(Hopper) by knowing how to act only in 3 (5) such crucial learned states
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I Probing States visualization in RL

m More examples of learned probing states:
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Limitations and Future Work 2

Limitations
m Different policies may need different probing states for efficient evaluation

m If there are many probing states, then the concatenated vector of probing actions
can be very large

m In some environments a lot of probing states are needed to evaluate a policy
Future work

m Extension to V(s,0), Q(s,a,0)

m Recursive generation of probing states
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I (Online) Return-Conditioned Reinforcement Learning 2

A command of the form ’act in the environment and achieve a desired return’ is given
as input to the policy.

General framework (Schmidhuber, 2019; Srivastava et al., 2019):
m Act in the environment with a given return command
m Use the data to learn a map from return commands and states into actions

m Ask for higher return commands at next environment interaction

m Most methods are based on the idea of hindsight learning: the agent’s behavior is
optimal if it had had the achiever return as input command

Here we propose instead to learn a generator G, : R — © such that if § = G,(c),
then E[Ry|0] = c.
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I —
I Fast Weights / Hypernetworks (Schmidhuber, 1992; Ha et al., 2016) 2

m Each weight matrix of the policy is split H
into slices
m For each slices we learn an embedding 2 re- [
shape []

m A shared MLP H receives as input a z
and outputs a slice

m further context information can be given
to H in form of an additional
conditioning input ¢

m The policy weights are finally combined
concatenating the generated slices

= The parameters of the generator G, are
the parameters of H and all the
embeddings z
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I Goal-Conditioned Generators of Deep Policies 2

— 1. Given command ¢, generate 6 = G ,(c)
Ly

2. Simulate 7g and obtain return r

3. Use data to train V() .
-

4. Minimize L (p) = gD[(VW(Gp(c)) —¢)?] prbing
to learn the parameters p of the generator

ﬂ] concat. Vw (0)

Probing
Actions

5. Choose new command ¢

—— 6. Repeat until convergence

-
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Experiments

25
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I Testing the Generator
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Testing the Generator
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Limitations and Future Work 2

Limitations

m Policies created by an untrained generator might have weights that are far from
typical initialization schemes

m The method is based on the episodic return signal

m Different policies may need different probing states for efficient evaluation

m In some environments a lot of probing states are needed to evaluate a policy
Future work

m Extension to state-based evaluation and generation of policies

m Context commands different than desired return

m Richer policy generation through VAEs
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Thank You for Your Attention!
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