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Motivation

The notion that the brain is Bayesian and performs
some form of inference has attracted enormous at-
tention in neuroscience. This casts the brain as re-
alising a model about causes of sensation, that can
predict observations and future behaviour.
Practically, this involves the optimisation of the
variational free energy (derived from the KL-
divergence). Then behavioural variations are
attributed to altered priors over the genera-
tive model parameters. We offer an alternative
account for explaining behavioural varia-
tions using the Rényi divergences.

Rényi Divergence

Rényi divergences are a general class of divergences,
indexed by an α parameter, of which the KL-
divergence is a special case:

Dα [p(s|o)||q(s)] = 1
α− 1

log
∫
p(s|o)αq(s)1−α ds

This divergence family can provide different poste-
rior estimates, at the minimum of the divergence
with respect to q, that vary smoothly with α. These
differences are possible only when the true posterior,
e.g., some bi-modal distribution, is not in the same
family of distributions as the approximate posterior,
e.g. a Gaussian distribution. The corresponding
variational Rényi bound is:

Rα = 1
1− α

log
∫
p(s, o)1−αq(s)α ds,

where α ∈ R+ \ {1} .

Properties of Rényi bound

Under the Rényi bound optimising α → 0+, the
approximate posterior covers the joint distribution.
This happens because the approximate posterior is
forced to be q(·) > 0, whenever the joint is p(·) > 0
(i.e., zero-avoiding). This implies that low probabil-
ity regions of the joint distribution may be overesti-
mated.

Conversely, α→ +∞ will favour posterior distribu-
tions that best fit the mode with the most mass (not
necessarily the highest). This happens because the
approximate posterior is forced to be small, when-
ever the joint is small (i.e., zero-forcing). This causes
parts of the joint distribution to be excluded. Fig-
ure 2 illustrates this.

Multi-armed bandit simulations

To illustrate differential preferences that arise under
the Rényi bound we simulated the multi-armed ban-
dit paradigm. This was formulated as a one-state
Markov Decision Process where the agent could pull
an arm and observe corresponding outcome (i.e.,
score) each time-step. The agent’s objective was to
identify, and select, the arm with the highest Sharpe
ratio. The Sharpe ratio, a variance adjusted return
measure, is defined as SR := [Rt]

V[Rt].
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Figure 1:Score distribution for each arm

Each arm has a fixed distribution unknown to the
agent: arm 1 is a bi-modal distribution with a
Sharpe ratio of SR = 2.03, arm 2 is a Gaussian
distribution with a Sharpe ratio of SR = 1.76, and
arm 3 is another bi-modal distribution with an ex-
pected return of SR = 6.20. Thus, arm 3 was the
best choice i.e., the arm with the maximal Sharpe
ratio. We measured performance using accumulated
regret, R, defined as: R = ∑X

t=1(SR∗−SRt). Here,
SR∗ is the maximal Sharpe ratio from arm 3, and
SRt the Sharpe ratio for pulled arm at iteration t.

Figure 2:The Rényi bound as a function of the variational posterior for arm 1.

We simulated 4000 iterations of the agents
optimising the Rényi bound with α values:
→ 0+, 0.5,→ 1−, 2, 10,→ +∞, during this task.
Figure 3 shows the behavioural variations, measured
using cumulative regret.
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Figure 3:Regret under the Rényi bound.

Optimising α → 1− leads to the lowest cumulative
regret, & α→∞;→ 0+ with the highest. Next, we
plot the variational posterior for arm 1 where ap-
proximating the second mode leads to sub-optimal
action selection. We see different action selection
strategies for agents optimising α→∞;→ 0+ that
are consequence of bound properties. For agents op-
timising α → ∞, the posterior gets stuck in the
second mode due to the low variance leading to the
sub-optimal arm selection. For α → 0+ optimising
agents mass-covering behaviour leads to high prob-
ability that a sub-optimal arm is selected.

Conclusions

We show that the Rényi bound provides a way to
establish behavioural differences given a generative
model that is different than a change of priors. This
is accomplished by changes in an α parameter that
alter the bound strength, induce different inferences
and consequent behavioural variations.
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